Genetic Engineering to Add Traits Not Natural to the Feedstock

fretfulcrunchΒιοτεχνολογία

10 Δεκ 2012 (πριν από 4 χρόνια και 4 μήνες)

126 εμφανίσεις

Working Document of the NPC Future Transportation Fuels Study

Made Available August 1, 2012









Topic Paper #
11


Genetic Engineering to Add Traits

Not Natural to the Feedstock








O
n

August 1
,

2012
,

T
he
Na
ti
on
a
l

P
e
t
r
o
l
e
um

C
oun
c
i
l

(
N
P
C
)

i
n

a
pp
r
ov
i
ng

it
s
r
e
po
r
t
,
Advancing Technology for America’s Transportation Future
,

a
l
s
o

a
pp
r
ov
e
d

t
he

m
a
k
i
ng
a
v
a
il
a
b
l
e

of

ce
r
t
a
i
n

m
a
t
e
r
i
a
l
s

u
s
e
d

i
n

t
he
s
t
udy

p
r
o
ce
ss
,

i
n
c
l
ud
i
ng

d
e
t
a
il
e
d,
s
p
ec
i
f
i
c

s
ub
j
ec
t

m
a
tt
e
r

p
a
p
e
r
s

p
r
e
p
a
r
e
d

or

u
s
e
d

b
y

t
he

study’s

T
a
s
k

G
r
oups

a
nd
/or

S
ubg
r
oup
s
.

T
h
e
s
e

T
op
i
c

P
a
p
e
r
s

we
r
e

w
o
r
k
i
ng

do
c
u
m
e
n
t
s

t
h
a
t

we
r
e p
a
r
t

of

t
he

a
n
a
l
y
s
e
s
t
h
a
t

l
e
d

t
o

d
e
v
e
l
op
m
e
nt

of

t
he

s
u
mm
a
r
y

r
e
s
u
lt
s p
r
e
s
e
n
t
e
d

i
n

t
he

r
e
p
o
r
t

s
E
x
ec
u
ti
ve

S
u
mm
a
r
y

a
nd

C
h
a
p
t
e
r
s
.


T
h
e
s
e

T
o
pi
c

P
a
p
er
s

re
p
r
e
s
e
n
t

t
h
e v
i
ew
s a
n
d
c
o
n
c
lu
s
i
o
n
s of
t
h
e a
u
t
h
o
r
s
.
T
h
e

N
a
t
i
o
n
al
P
e
t
r
o
l
e
u
m

C
o
un
c
i
l
h
as

n
ot

e
nd
o
r
s
e
d

or a
pp
r
ov
e
d

t
h
e
s
t
a
t
e
m
e
n
t
s a
n
d
c
o
n
c
lu
s
i
o
n
s
c
o
n
t
a
in
e
d
i
n
t
h
e
s
e
d
o
c
u
m
e
n
t
s,

bu
t

a
pp
r
ov
e
d

t
h
e
publi
c
a
t
i
on

of

t
h
e
s
e

m
a
t
er
i
a
l
s

as

p
a
r
t

of
t
h
e

s
t
ud
y

p
r
o
ce
ss
.


T
he

N
P
C

b
e
li
e
v
e
s
t
h
a
t

t
h
e
s
e

p
a
p
e
r
s
w
il
l

be

of

i
n
t
e
r
e
s
t

t
o

t
he

r
ea
d
e
r
s of

t
he
r
e
po
r
t

a
nd

w
il
l

h
e
l
p

t
h
e
m

b
e
tt
e
r

und
e
r
s
t
a
nd

t
he

r
e
s
u
lt
s
.

T
h
e
s
e

m
a
t
e
r
i
a
l
s
a
r
e

b
e
i
ng

m
a
de

a
v
a
il
a
b
l
e

i
n

t
he

i
n
t
e
r
e
s
t

of

t
r
a
n
s
p
a
r
e
n
c
y.



1
 
 
Genetic  Engineering  to  add  traits  not  natural  to  the  feedstock
 
By  Tom  Binder
 
 
Until  the  global  population  stabilizes  sometime  in  the  latter  half  of  this  century
,  there  will  be  a  need  
for  
deployment  of  more  intensive  agricultural  practices  on  all  arable  
land.    As  a  counter  point  to  this
,
 
there  
will  be
 
simultaneous
 
pressure  to  
implement  long
-­‐
term  sustainability  practices  to  protect  ecosystems  
needed  for  genetic  diversity  and  
to  ensure  
ongoing
 
health  of  farmland.    While  these  two  pressure
s
 
appear  to  be  at  l
oggerheads
,
 
this  does  not  necessarily  
need  to  be  the  case
.
 
As
 
an  example
,  herbicide
 
resistance  has  allowed  increased  production  while  at  the  
same
 
time  making  no
-­‐
till  
method
s  more  
practical.    Continued  development  
of  agronomic  traits  that
 
provide  more  oppor
tunities  for  integrated  
pest  and  weed  management  will  be  needed  to  stay  ahead  of  the  development  of  resistance  in  nature.    
 
With  increased  demand  for  agricultural  and  fore
stry  output  
,  research    tha
t  focuses  on  productivity  gains
 
and  cultural  practices
 
to  
promote
 
those  gains
 
(
while  protecting  the  environment
)
 
will  need  to  be  
supported
 
at  higher  levels
 
by  bo
th  government  and  industry.
 
 
T
echnologies
 
proven
 
to
 
increase  
production  while  decreasing  inputs  
will  need
 
continued  public  support  
for  rapid  deployment  a
nd  
adoption
.  
   
T
raits
,  in  addition  to  t
he  herbicide  res
istance  previously  mentioned,  
that  will  have  s
ignificant  
impact  on  production
 
in  the  temperate  agricultural  regions  present  in  North  America  shou
ld  also  be  
developed
.  
 
Some  of  the  traits  relevant
 
to  
yield  improvements  of  both  conventi
onal  and  non
-­‐
conventional  crops
 
are  listed  below:
 
1.

Frost  tolerance  and  the  ability  to  germinate  at  colder  temperatures.    Traits  such  as  this  will  allow  
longer  growing  seasons,  
faster  canopy  development  before  weeds  compete
 
for  resources
,
 
and  
earlier  maturation  before  the  highest  summer  temperatures
.
 
2.

Drought  and  heat  tolerance
s
.  These
 
traits
 
will  enable  photosynthesis  and  growth  to  continue  
during  stresses  from  water  deficits  and  high  summer  temperatures.
 
   
Heat  tolerance
,  
b
oth  
in  
daytime  and  nighttime,
 
will  be  an
 
increasingly  important  trait
,
 
depending  on
 
the  pressures  
climate  change
 
bring
s
 
to  North  American  agricultural  regions
.
 
3.

Water
 
and  nitrogen  use  efficiency.    This  is  not
 
only  
important  in  
the  development  of  primary  
cro
p  traits  but
 
also  in  those
 
of
 
cover  crops  that  will  enhance  moisture  and  nutrient  retention  
out
side
 
of  the  primary  crop  cycle.    
 
4.

Salt  water  tolerance.    Transfer  of  t
raits  fro
m  salt
-­‐
tolerant
 
halophile
s  to  agriculturally  useful  
crops
 
will  allow  for  use  of  br
ackish  water  fo
r  irrigation  and  
for  the  reclamation
 
of  
agricu
ltural  
land  that  has  become  too
 
saline  for  continued  use.
 
5.

Perenniality  for  crops  such  as
 
corn  and  wheat
.
   
While  annual  varieties  have  been  easier  to  breed  
and  develop
,
 
perennial  varieties  may
 
require  fewer  inputs  and
 
become  cost  effective  
as  our  
ability  to  use  techno
logy  to  
breed  novel  forms
 
of  crops  develops.
 
 
6.

Nitrogen  use  efficiency  or  nitrogen  fix
ation
.    The  ability  to  
scavenge
 
more  of  the  nitrogen  that  is  
available  at  lower  levels  
in  the  s
oil  
will  decrease  the  amount  needed
 
to  be  applied  as  fertilizer
.    
Developing  nitrogen  fixation
 
symbiosis  systems
 
could
 
potentially  
reduce  
the  need  for  
fertilizer  
applications.
   
Th
ese  are
 
complex  system
s
 
to  develop
 
and  manage
 
but  ha
ve
 
large  potential
 
to  
2
 
 
low
er  energy  inputs  in  the  form  of  synthetic  nitrogen  and  to  lower  losses  to  the  nations  
watersheds.
 
7.

Plant
-­‐
mediated  and  exogenous  manipulation  of  rhizosphere  microbial  popula
tions.  Such  traits  
would  target
 
in
creased  mineral  nutrient  uptake;
 
reduced  insect,  ne
matode,  and  disease  
pressure;  root  growth  and  morphology;  and  induction  of  systemic  resistance.
 
8.

Increase
d
 
photosynthetic  efficiency.  
 
Small  increases  in  efficiency  
can  have  a  large  benefit  sinc
e  
most  crops  are  only  between  1%  to  
3
%
 
efficient  at  using  incid
ent  sunlight
.    Many  sources  of  
improvements  are  possible
,
 
ranging  from  e
liminating  feedback  systems  in  
crops  that  
reduce  
photosynthesis  to  changing  
plant  
architecture  and  increasing
 
the  growing  season.
 
9.

M
aintained
 
photosynthetic  efficiency  during  grain  fill
.  This  important  physiological  trait  is  
termed
 
“functional  staygreen”    and  focuses  on  a  specific,  heritable  trait  that  should  improve  
yield.
 
 
Extending  grain  fill  or  crop  maturation  could  significantly  increase  yield.
 
10.

Controlled  senescence  of  energy  
crop  b
iomass
 
,  both  annual  and  perennial
.    Where  crop  residue  
and  biomass  crops  are  grown,  the  ability  to  get  the  mineral  and  nitrogen  in  the  harvested  
biomass  portion  moved  into  the  root  and
/or  the
 
portion  of  the  plant  that  stays  in  the  field  will  
reduce  both  p
rocessing  costs  and  t
he  need  for  mineral  fertilizer  
use
 
11.

Development  of  traits  that  improve  utility  per  unit  dry  matter.    Included  in  this  would  be  
resistance  to  microbial  and  insect  degradation  of  harvested  grain  in  storage  and  production  of  
higher  value  s
ubstrates  for  biological  (e.g.
,
 
nutrition,  fermentation
,  high  starch,  high  oil
)  or  
thermo
-­‐
chemical  (e.g.
,
 
pyrolysis)  processing  applications.
 
 
 
While  this  list  is  not  meant  to  be  comprehensive
,
 
it  does  illuminate  the  potential
 
extent  to  which
 
an  
increased  
understanding  of  how  nature  has  been  able  to  adapt  plants  to  every  environment  will  help  
our  agricultural  and  forestry  
industries  
develop  crops  for  increased  yield
s
 
with  less  intensive  inputs.    
Most  of  the  solutions  we  will  need  are  already  out  there  in  th
e  biosphere
;  our  job  is
 
to  recognize  and  
deploy  them  to  meet  a  growing  global  demand.