Tony Rees
–
C
-
squares Oct 2007
1
Nested Grids: the c
-
squares global grid
Tony Rees
CSIRO Marine and Atmospheric Research, Hobart
Tony.Rees@csiro.au
for: PEMS Workshop on Nested Grids, 21 October 2007
version: final
-
with update, September 2009
Tony Rees
–
C
-
squares Oct 2007
2
The Big Challenge:
Integrating distributed and heterogeneous spatial data
resources to advance science and societal goals
Opening the “Data Closet”
(With thanks to K. Stocks et al. / SDSC for the image and concept!)
Tony Rees
–
C
-
squares Oct 2007
3
One solution: rasterised data on a common grid
–
Grids come in different flavours…
•
Geodesic, global “equal area”
(e.g. triangular, hexagonal, other)
•
Lat / lon, “equal angle”
e.g. 1º x 1º grids, etc. (in unprojected, =
“geographic” projection)
•
Local projected “equal area” grids
e.g. 100 km grids, etc.
–
Typically regional / national scale, do not integrate globally;
do not cope well with longitudinal shifts
–
Areas of interest are sometimes outside the grid (e.g. offshore islands,
high seas, etc.)
–
This project (PEMS) has identified a requirement for a large
scale “Grid System 1” lat / lon based grid, meshing with local,
projected “System 2” grids for finer scale data
–
C
-
squares is an example global scale, lat / lon based grid that
may be of interest for this project’s needs for Grid System 1.
Tony Rees
–
C
-
squares Oct 2007
4
The c
-
squares global grid
–
C
-
squares: acronym for
“Concise Spatial Query and Representation
System” (or: CSIRO squares ??)
–
Developed at CMAR in 2001
-
2, published in scientific literature in 2003*
–
Cover entire world surface, not just the sea (despite choice of journal for
initial publication)
–
Based on pre
-
existing, established “WMO square” notation, for global 10º x
10º squares
–
C
-
squares notation subdivides WMO squares into a nested grid using
alternate base 2, base 5 division, giving the sequence
10º x 10º > 5º x 5º > 1º x 1º > 0.5º x 0.5º > 0.1º x 0.1º, etc.
*
Rees, Tony. 2003. "C
-
squares", a new
spatial indexing system and its applicability
to the description of oceanographic datasets.
Oceanography
16 (1), pp. 11
-
19.
Tony Rees
–
C
-
squares Oct 2007
5
WMO 10
-
degree squares
(starting point for c
-
squares recursive subdivision)
7817
7816
7815
7814
7813
7812
7811
7810
7809
7808
7807
7806
7805
7804
7803
7802
7801
7800
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
7717
7716
7715
7714
7713
7712
7711
7710
7709
7708
7707
7706
7705
7704
7803
7702
7701
7700
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
7617
7616
7615
7614
7613
7612
7611
7610
7609
7608
7607
7606
7605
7604
7803
7602
7601
7600
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
7517
7516
7515
7514
7513
7512
7511
7510
7509
7508
7507
7506
7505
7504
7803
7502
7501
7500
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
7417
7416
7415
7414
7413
7412
7411
7410
7409
7408
7407
7406
7405
7404
7803
7402
7401
7400
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
7317
7316
7315
7314
7313
7312
7311
7310
7309
7308
7307
7306
7305
7304
7803
7302
7301
7300
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
7217
7216
7215
7214
7213
7212
7211
7210
7209
7208
7207
7206
7205
7204
7803
7202
7201
7200
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
7117
7116
7115
7114
7113
7112
7111
7110
7109
7108
7107
7106
7105
7104
7803
7102
7101
7100
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
7017
7016
7015
7014
7013
7012
7011
7010
7009
7008
7007
7006
7005
7004
7803
7002
7001
7000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
5017
5016
5015
5014
5013
5012
5011
5010
5009
5008
5007
5006
5005
5004
5003
5002
5001
5000
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
5117
5116
5115
5114
5113
5112
5111
5110
5109
5108
5107
5106
5105
5104
5103
5102
5101
5100
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
5217
5216
5215
5214
5213
5212
5211
5210
5209
5208
5207
5206
5205
5204
5203
5202
5201
5200
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
5317
5316
5315
5314
5313
5312
5311
5310
5309
5308
5307
5306
5305
5304
5303
5302
5301
5300
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
5417
5416
5415
5414
5413
5412
5411
5410
5409
5408
5407
5406
5405
5404
5403
5402
5401
5400
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
5517
5516
5515
5514
5513
5512
5511
5510
5509
5508
5507
5506
5505
5504
5503
5502
5501
5500
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
5617
5616
5615
5614
5613
5612
5611
5610
5609
5608
5607
5606
5605
5604
5603
5602
5601
5600
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
5717
5716
5715
5714
5713
5712
5711
5710
5709
5708
5707
5706
5705
5704
5703
5702
5701
5700
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
5817
5816
5815
5814
5813
5812
5811
5810
5809
5808
5807
5806
5805
5804
5803
5802
5801
5800
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
30
°
N
60
°
N
90
°
N
0
°
30
°
S
60
°
S
90
°
S
180
°
W
150
°
W
120
°
W
90
°
W
60
°
W
30
°
W
0
°
30
°
E
60
°
E
90
°
E
120
°
E
150
°
E
180
°
E
NW
(7xxx)
NE
(1xxx)
SE
(3xxx)
SW
(5xxx)
Tony Rees
–
C
-
squares Oct 2007
6
7817
7816
7815
7814
7813
7812
7811
7810
7809
7808
7807
7806
7805
7804
7803
7802
7801
7800
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
7717
7716
7715
7714
7713
7712
7711
7710
7709
7708
7707
7706
7705
7704
7803
7702
7701
7700
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
7617
7616
7615
7614
7613
7612
7611
7610
7609
7608
7607
7606
7605
7604
7803
7602
7601
7600
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
7517
7516
7515
7514
7513
7512
7511
7510
7509
7508
7507
7506
7505
7504
7803
7502
7501
7500
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
7417
7416
7415
7414
7413
7412
7411
7410
7409
7408
7407
7406
7405
7404
7803
7402
7401
7400
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
7317
7316
7315
7314
7313
7312
7311
7310
7309
7308
7307
7306
7305
7304
7803
7302
7301
7300
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
7217
7216
7215
7214
7213
7212
7211
7210
7209
7208
7207
7206
7205
7204
7803
7202
7201
7200
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
7117
7116
7115
7114
7113
7112
7111
7110
7109
7108
7107
7106
7105
7104
7803
7102
7101
7100
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
7017
7016
7015
7014
7013
7012
7011
7010
7009
7008
7007
7006
7005
7004
7803
7002
7001
7000
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
5017
5016
5015
5014
5013
5012
5011
5010
5009
5008
5007
5006
5005
5004
5003
5002
5001
5000
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
5117
5116
5115
5114
5113
5112
5111
5110
5109
5108
5107
5106
5105
5104
5103
5102
5101
5100
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
5217
5216
5215
5214
5213
5212
5211
5210
5209
5208
5207
5206
5205
5204
5203
5202
5201
5200
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
5317
5316
5315
5314
5313
5312
5311
5310
5309
5308
5307
5306
5305
5304
5303
5302
5301
5300
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
5417
5416
5415
5414
5413
5412
5411
5410
5409
5408
5407
5406
5405
5404
5403
5402
5401
5400
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
5517
5516
5515
5514
5513
5512
5511
5510
5509
5508
5507
5506
5505
5504
5503
5502
5501
5500
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
5617
5616
5615
5614
5613
5612
5611
5610
5609
5608
5607
5606
5605
5604
5603
5602
5601
5600
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
5717
5716
5715
5714
5713
5712
5711
5710
5709
5708
5707
5706
5705
5704
5703
5702
5701
5700
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
5817
5816
5815
5814
5813
5812
5811
5810
5809
5808
5807
5806
5805
5804
5803
5802
5801
5800
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
30
°
N
60
°
N
90
°
N
0
°
30
°
S
60
°
S
90
°
S
180
°
W
150
°
W
120
°
W
90
°
W
60
°
W
30
°
W
0
°
30
°
E
60
°
E
90
°
E
120
°
E
150
°
E
180
°
E
NW
(7xxx)
NE
(1xxx)
SE
(3xxx)
SW
(5xxx)
*
you are
here!
WMO 10
-
degree squares
(starting point for c
-
squares recursive subdivision)
Tony Rees
–
C
-
squares Oct 2007
7
The c
-
squares global grid
–
cont’d
–
Each grid cell identifier (= c
-
squares code) “knows” the identity of its
parent, grandparent, etc.
–
Aggregated search can be done by interrogating only the required
leading chars. of the code, e.g.:
•
10º c
-
square code (~1000 km):
3414
(= WMO square code)
•
5º c
-
square code (~500 km):
3414:2
•
1º c
-
square code (~100 km:
3414:227
•
0.5º c
-
square code (~50 km):
3414:227:3
•
0.1º c
-
square code (~10 km):
3414:227:383
(etc.)
(this is the nested set of squares that includes the point at lat
-
42.82, lon 147.38,
in decimal degrees)
•
Search for character string “3414” (ten degree square), with wildcard
appended, will return any of these nested data items
•
Same available at other levels of the hierarchy as applicable (i.e.,
search on any parent code can easily be configured to return all of its
children as well, if desired)
Tony Rees
–
C
-
squares Oct 2007
8
10
-
, 5
-
degree c
-
squares in the Australian region
3314
Tony Rees
–
C
-
squares Oct 2007
9
10
-
, 5
-
degree c
-
squares in the Australian region
3314
1
2
3
4
Tony Rees
–
C
-
squares Oct 2007
10
Recursive subdivision principle (in the SE global quadrant)
-
for 10
-
> 1, 1
-
> 0.1, 0.1
-
> 0.01 degree squares, etc.
100
110
120
130
140
350
360
370
380
390
101
141
351
391
102
142
352
392
103
143
353
393
104
114
124
134
144
354
364
374
384
394
205
215
225
235
245
455
465
475
485
495
206
246
456
496
207
247
457
497
208
248
458
498
209
219
229
239
249
459
469
479
489
499
1
2
3
4
Tony Rees
–
C
-
squares Oct 2007
11
3314:100
3314:1
3314
3314:499
Tony Rees
–
C
-
squares Oct 2007
12
Points of interest
–
C
-
squares notation for 10º squares is identical to that for
WMO 10º squares (i.e., no transformation required)
–
1º and 0.5º squares are popular data aggregation sizes at
regional scales
–
0.5º squares are equivalent to 1:100,000 Australian
mapsheets (with global, cf. locally applicable, numbering
system)
–
0.1º squares and finer are useful for data holdings at sub
-
regional / local scales
–
No direct support for 2.5º, 2º, or 0.25º squares in this
system, or degrees / mins / secs notation (except 30 min, =
0.5 degrees)
Tony Rees
–
C
-
squares Oct 2007
13
Who uses what? (Google search hits
–
October 2007…)
•
“10 degree squares” OR “ten degree squares”
:
193
•
“5 degree squares” OR “five degree squares”
:
563
•
“2.5 degree squares” OR “two point five degree squares”:
4
•
“2 degree squares” OR “two degree squares”:
135
•
“1 degree squares” OR “one degree squares”
:
1,660
•
“0.5 degree squares” OR “half degree squares”
(30 min)
:
1,060
•
“0.25 degree squares” OR “quarter degree squares” (15 min):
17,300 *
•
“10 minute squares” OR “ten minute squares”:
249
•
“0.1 degree squares” OR “tenth degree squares”
(6 min)
:
575
•
“5 minute squares” OR “five minute squares”:
47
•
“3 minute squares” OR “three minute squares”
:
1
•
“1 minute squares” OR “one minute squares”:
51
•
“0.01 degree squares” OR “hundredth degree squares”
(0.6 min)
:
1
* NB: (1) “quarter degree squares” are a common standard in use in Africa for wildlife surveys, which
accounts for many / most of these hits
(2) Of the above, c
-
squares directly supports the resolutions shown in
bold + underline
, indirectly
could support others (by aggregation / approximate matching??)
Tony Rees
–
C
-
squares Oct 2007
14
D/M/S vs. decimal degrees…
•
What fine scale grids (e.g. sub 1
-
degree) are in use locally /
internationally
–
e.g.:
–
30 minute = 0.5 degree (~50 km)
–
5 minute = 0.0833 degree (~10 km)
–
1 minute = 0.0167 degree (~2 km)
–
30 second = 0.00833 degree (~1 km)
–
9 second = 0.0025 degree (~250m)
–
2 second = 0.00055 degree (~50m)
–
1 second = 0.000278 degree (~25m)
•
Is there a requirement / preference to maintain similar (deg / min /
sec) resolutions in the selected system? (cf. c
-
squares is based on
decimal degrees and half steps)
•
Does this preclude (or encourage) the use of c
-
squares for
resolutions e.g. 0.5 degrees and above?
Tony Rees
–
C
-
squares Oct 2007
15
Use cases for c
-
squares, of possible interest to this project
–
Hierarchical spatial search
•
Example shown: OBIS (Ocean Biogeographic information System), USA
–
C
-
squares as spatial metadata, and associated spatial search
(also: mapping)
•
Example shown: MarLIN (Marine Laboratories Information Network),
CSIRO, Australia
–
C
-
squares as grid cell identifiers, for data storage, rapid access,
and mapping of outputs
•
Example shown: AquaMaps project (Germany + Philippines)
–
Variable resolution encoding within the same dataset (or data item)
•
Example shown: CSIRO (CMAR) satellite data index
–
Using c
-
squares for Antarctic / Southern Ocean / Polar data
•
Examples shown: CMAR satellite data index; online polygon fill algorithm (on
c
-
squares website)
Tony Rees
–
C
-
squares Oct 2007
16
Hierarchical spatial search: OBIS example
http://www.iobis.org/
Tony Rees
–
C
-
squares Oct 2007
17
OBIS, USA: Hierarchical spatial search (for species with records in selected area)
Tony Rees
–
C
-
squares Oct 2007
18
OBIS, USA: Hierarchical spatial search (for species with records in selected area)
Tony Rees
–
C
-
squares Oct 2007
19
C
-
squares as spatial metadata: MarLIN
example
http://www.cmar.csiro.au/marlin/
Tony Rees
–
C
-
squares Oct 2007
20
C
-
squares as spatial metadata (list of square IDs = “dataset footprint”)
Tony Rees
–
C
-
squares Oct 2007
21
C
-
squares as spatial metadata (list of square IDs = “dataset footprint”)
Tony Rees
–
C
-
squares Oct 2007
22
C
-
squares as spatial metadata (list of square IDs = “dataset footprint”)
Tony Rees
–
C
-
squares Oct 2007
23
C
-
squares as spatial metadata (list of square IDs = “dataset footprint”)
Tony Rees
–
C
-
squares Oct 2007
24
C
-
squares as spatial metadata (list of square IDs = “dataset footprint”)
(A)
(B)
…search for matching square (=tile) ID (A) is much more precise than
search by bounding box using “overlapping rectangles” test (B)
[far fewer false positives]
–
presuming tile size is well matched to
the data and / or intended query scale (may be an optimization
issue here)
Tony Rees
–
C
-
squares Oct 2007
25
C
-
squares as grid cell identifiers: AquaMaps
example
http://www.aquamaps.org/
Tony Rees
–
C
-
squares Oct 2007
26
C
-
squares as grid cell identifiers: example from the AquaMaps project
“Half degree cell authority file” (HCAF)
–
covers the world in 259,200 database rows
Tony Rees
–
C
-
squares Oct 2007
27
(Looks familiar?)
(from PEMS presentation, SSC2007)
Tony Rees
–
C
-
squares Oct 2007
28
C
-
squares as grid cell identifiers: example from the AquaMaps project
“Half degree cell authority file” (HCAF)
–
covers the world in 259,200 database rows
Tony Rees
–
C
-
squares Oct 2007
29
C
-
squares as grid cell identifiers: example from the AquaMaps project
1.0
0.5
0
28
29
30
31
32
1.0
0.5
0
7
8
9
10
11
1.0
0.5
0
10
20
30
40
50
1.0
0.5
0
A
B
Temperature
Substrate type
Salinity
Depth
Modelled fish
-
habitat
relationships (SI’s)
Temperature SI map
Depth SI map
Salinity SI map
Substrate SI map
HSI =
1/4
Low
suitability
High suitability
Unsuitable
Medium
Habitat suitability
index map
Digital environmental maps
recoded with the SI’s
Tony Rees
–
C
-
squares Oct 2007
30
C
-
squares as grid cell identifiers: example from the AquaMaps project
Sample map output (produced by the c
-
squares mapper)
NB with multiple maps, can then query individual cells for species richness, etc. etc.
Tony Rees
–
C
-
squares Oct 2007
31
Variable resolution encoding using c
-
squares: Satellite Data Index example
http://www.marine.csiro.au/remotesensing/csq
-
chooser.htm
Tony Rees
–
C
-
squares Oct 2007
32
Variable resolution encoding: example from the CMAR satellite data index
Special notation available, e.g.
3414
= ten degree square only (data may be anywhere within it);
3414:***:*
= all of the 0.5 degree squares within ten degree square 3414.
Tony Rees
–
C
-
squares Oct 2007
33
Antarctic data
–
special case or not?
•
AAD, satellite imagery, oceanographic data
–
much data
from region between Australia and Antarctica, as well as on
landmass itself and adjacent waters
•
Definite integration benefits if on a common grid / spatial
query interface, e.g. OBIS example, others… (no fixed
boundary in the ocean / natural world)
•
C
-
squares covers polar regions as well as rest of world (just
have to decide which square to allocate actual pole to!)
–
uses more squares, but otherwise no intrinsic problem
•
Example from CMAR satellite data index (uses 0.5 degree
squares):
Tony Rees
–
C
-
squares Oct 2007
34
Tony Rees
–
C
-
squares Oct 2007
35
Tony Rees
–
C
-
squares Oct 2007
36
Tony Rees
–
C
-
squares Oct 2007
37
(what just happened here?)
fragment of the spatial index…
–
We clicked on square with bounds
(lat)
-
65
–
-
70, (lon) 130
–
135 … = c
-
square 3613:3 (user never sees this, but
system generates it for the search)
–
System searches for unique scenes with
prefix “3613:3” in the spatial index, does a
join on other table[s] to satisfy any other
criteria
–
Generates list of 473 matching targets in
(in this case) <2 seconds
–
Spatial partitioning used in this system, to
optimise search and index rebuild speeds
(single table split into 100 smaller ones);
“duplicate” single large one retained to
quickly retrieve all squares associated
with a particular scene (for mapping)
Tony Rees
–
C
-
squares Oct 2007
38
Tony Rees
–
C
-
squares Oct 2007
39
Tony Rees
–
C
-
squares Oct 2007
40
Tony Rees
–
C
-
squares Oct 2007
41
Tony Rees
–
C
-
squares Oct 2007
42
–
Polygons encoded to c
-
squares can include a pole without
problem: e.g. on
-
line polygon
-
fill algorithm on c
-
squares
web site:
http://www.cmar.csiro.au/csquares/converter.htm
Tony Rees
–
C
-
squares Oct 2007
43
Tony Rees
–
C
-
squares Oct 2007
44
Successful filled polygon conversion
c
-
square code:
3606:104|3606:114|3606:124|3606:134|3606:143|3606:144|3606:2**|3606:353|
3606:354|3606:363|3606:364|3606:372|3606:373|3606:374|3606:382|3606:383|
3606:384|3606:391|3606:392|3606:393|3606:394|3606:4**|3607:1**|3607:205|
3607:215|3607:225|3607:235|3607:245|3607:246|3607:3**|3607:455|3607:456|
3607:465|3607:466|3607:475|3607:476|3607:477|3607:485|3607:486|3607:487|
3607:495|3607:496|3607:497|3607:498|3705:239|3705:248|3705:249|3705:384|
3705:392|3705:393|3705:394|3705:457|3705:458|3705:459|3705:466|3705:467|
3705:468|3705:469|3705:475|3705:476|3705:477|3705:478|3705:479|3705:485|
3705:486|3705:487|3705:488|3705:489|3705:495|3705:496|3705:497|3705:498|
3705:499|3706:101|3706:102|3706:103|3706:104|3706:110|3706:111|3706:112|
3706:113|3706:114|3706:120|3706:121|3706:122|3706:123|3706:124|3706:130|
3706:131|3706:132|3706:133|3706:134|3706:140|3706:141|3706:142|3706:143|
3706:144|3706:2**|3706:3**|3706:4**|3707:1**|3707:205|3707:206|3707:207|
3707:208|3707:215|3707:216|3707:217|3707:218|3707:219|3707:225|3707:226|
3707:227|3707:228|3707:229|3707:235|3707:236|3707:237|3707:238|3707:239|
3707:245|3707:246|3707:247|3707:248|3707:249|3707:3**|3707:4**| (etc.)
Tony Rees
–
C
-
squares Oct 2007
45
Successful filled polygon conversion
c
-
square code:
3606:104|3606:114|3606:124|3606:134|3606:143|3606:144|3606:2**|3606:353|
3606:354|3606:363|3606:364|3606:372|3606:373|3606:374|3606:382|3606:383|
3606:384|3606:391|3606:392|3606:393|3606:394|3606:4**|3607:1**|3607:205|
3607:215|3607:225|3607:235|3607:245|3607:246|3607:3**|3607:455|3607:456|
3607:465|3607:466|3607:475|3607:476|3607:477|3607:485|3607:486|3607:487|
3607:495|3607:496|3607:497|3607:498|3705:239|3705:248|3705:249|3705:384|
3705:392|3705:393|3705:394|3705:457|3705:458|3705:459|3705:466|3705:467|
3705:468|3705:469|3705:475|3705:476|3705:477|3705:478|3705:479|3705:485|
3705:486|3705:487|3705:488|3705:489|3705:495|3705:496|3705:497|3705:498|
3705:499|3706:101|3706:102|3706:103|3706:104|3706:110|3706:111|3706:112|
3706:113|3706:114|3706:120|3706:121|3706:122|3706:123|3706:124|3706:130|
3706:131|3706:132|3706:133|3706:134|3706:140|3706:141|3706:142|3706:143|
3706:144|3706:2**|3706:3**|3706:4**|3707:1**|3707:205|3707:206|3707:207|
3707:208|3707:215|3707:216|3707:217|3707:218|3707:219|3707:225|3707:226|
3707:227|3707:228|3707:229|3707:235|3707:236|3707:237|3707:238|3707:239|
3707:245|3707:246|3707:247|3707:248|3707:249|3707:3**|3707:4**| (etc.)
Tony Rees
–
C
-
squares Oct 2007
46
Successful filled polygon conversion
c
-
square code:
3606:104|3606:114|3606:124|3606:134|3606:143|3606:144|3606:2**|3606:353|
3606:354|3606:363|3606:364|3606:372|3606:373|3606:374|3606:382|3606:383|
3606:384|3606:391|3606:392|3606:393|3606:394|3606:4**|3607:1**|3607:205|
3607:215|3607:225|3607:235|3607:245|3607:246|3607:3**|3607:455|3607:456|
3607:465|3607:466|3607:475|3607:476|3607:477|3607:485|3607:486|3607:487|
3607:495|3607:496|3607:497|3607:498|3705:239|3705:248|3705:249|3705:384|
3705:392|3705:393|3705:394|3705:457|3705:458|3705:459|3705:466|3705:467|
3705:468|3705:469|3705:475|3705:476|3705:477|3705:478|3705:479|3705:485|
3705:486|3705:487|3705:488|3705:489|3705:495|3705:496|3705:497|3705:498|
3705:499|3706:101|3706:102|3706:103|3706:104|3706:110|3706:111|3706:112|
3706:113|3706:114|3706:120|3706:121|3706:122|3706:123|3706:124|3706:130|
3706:131|3706:132|3706:133|3706:134|3706:140|3706:141|3706:142|3706:143|
3706:144|3706:2**|3706:3**|3706:4**|3707:1**|3707:205|3707:206|3707:207|
3707:208|3707:215|3707:216|3707:217|3707:218|3707:219|3707:225|3707:226|
3707:227|3707:228|3707:229|3707:235|3707:236|3707:237|3707:238|3707:239|
3707:245|3707:246|3707:247|3707:248|3707:249|3707:3**|3707:4**| (etc.)
Tony Rees
–
C
-
squares Oct 2007
47
–
Note, (1) C
-
squares (and the polygon fill algorithm) copes with
the polar case with no intrinsic problem
–
(2) automatic, multi
-
resolution data compression incorporated
into the encoding algorithms on the c
-
squares web site (can be
disabled if desired)
–
(3) relevant decompression stage incorporated into the c
-
squares mapper, also can be disabled as required (e.g. for
demo purposes i.e. these slides)
…Of course, can do much of this (in principle) with any type of
grid structure / nomenclature for grid cells, however, c
-
squares
compatible datasets are in general use at sub
-
national,
national, and international scale, e.g.:
Tony Rees
–
C
-
squares Oct 2007
48
Museum Victoria Bioinformatics search interface (0.5 degree squares,
regional)
Tony Rees
–
C
-
squares Oct 2007
49
AquaMaps, also similar CMAR data (0.5 degree squares,
national + global)
Tony Rees
–
C
-
squares Oct 2007
50
Vertebrate census data, e.g. birds (1 degree squares, national)
Tony Rees
–
C
-
squares Oct 2007
51
BRS fisheries / associated data (0.5 degree squares, national)
Tony Rees
–
C
-
squares Oct 2007
52
AFMA data (0.1 degree / 6 minute squares,
sub
-
national)
Tony Rees
–
C
-
squares Oct 2007
53
Selected bibliography / reference materials
Rees, T. 2002.
C
-
squares
–
a new method for representing, querying, displaying and
exchanging dataset spatial extents
. Abstract and presentation at EOGEO Technical
Workshop, May 2002, accessible via
http://www.cmar.csiro.au/csquares/eogeo2002
-
rees.ppt
Rees, T. 2003. "C
-
squares", a new spatial indexing system and its applicability to the
description of oceanographic datasets.
Oceanography
16 (1), 11
-
19.
Rees, T. 2004.
Use of c
-
squares spatial indexing and mapping in the 2004 release of
OBIS, the Ocean Biogeographic Information System
. Abstract and presentation at
EOGEO Technical Workshop, July 2004, accessible via
http://www.cmar.csiro.au/csquares/eogeo04
-
rees.ppt
Rees, T. and Smith, G. 2004.
Application of c
-
squares spatial indexing to an archive of
remotely sensed data
. Abstract and presentation at EOGEO Technical Workshop, July
2004, accessible via
http://www.cmar.csiro.au/csquares/eogeo04
-
reessmith.ppt
Kaschner, K., J. S. Ready, E. Agbayani, J. Rius, K. Kesner
-
Reyes, P. D. Eastwood, A. B.
South, S. O. Kullander, T. Rees, C. H. Close, R. Watson, D. Pauly, and R. Froese.
2007.
AquaMaps
.
Abstract and presentation at Ocean Biodiversity Informatics 2007,
accessible via
http://www.cmar.csiro.au/datacentre/presentations/
OBI
-
2007
-
Kaschner.ppt
C
-
squares resources on the web:
•
C
-
squares home page:
http://www.cmar.csiro.au/csquares/
•
C
-
squares on SourceForge:
http://csquares.sourceforge.net/
.
Tony Rees
–
C
-
squares Oct 2007
54
http://www.cmar.csiro.au/csquares/
Tony Rees
–
C
-
squares Oct 2007
55
http://www.cmar.csiro.au/csquares/
Tony Rees
–
C
-
squares Oct 2007
56
Update September 2009
•
(1) C
-
squares functionality is currently being added to the IMOS (and
AODCJF/BlueNet) Metadata Search and Entry Tool
–
MEST
–
IMOS MEST is part of the GeoNetwork Open Source Development Community
(origin with FAO in Italy)
–
currently installed base in >20 countries worldwide;
Australian developments will be fed back into the GeoNetwork trunk for anyone to
use
•
(2)
IHO (International Hydrographic Office) is considering a recommendation
from their technical committee to use c
-
squares for spatial indexing of
hydrographic charts from all nations; proposal made at Montreal, May 2009,
to be progressed at Sydney, October 2009
•
(3) C
-
squares is still providing backbone of all the spatial searches and
mapping for OBIS (USA); 3 attempts to introduce more sophisticated GIS
front ends have so far failed to deliver desired outcomes, c
-
squares is still
mission critical for them…
•
(4) AquaMaps
–
another bulk c
-
squares user
–
is engaged with Google
Oceans to provide prototype “what lives here” functionality on
mouseover/click, for waters anywhere in the world.
Tony Rees
–
C
-
squares Oct 2007
57
Conclusions
•
C
-
squares may be a good fit with PEMS data store needs for “Grid System 1” (but may
need to think further about finer scale, D/M/S grid requirements)
•
System has global coverage / interoperability, has been real
-
world tested for 5+ years,
Antarctic / polar data not a problem (or features crossing the date line)
•
Some supporting infrastructure already in place, e.g.:
–
Tools i.e. encoders (lat/lon to c
-
squares), decoders, validators
–
C
-
squares mappers (x 4 worldwide at present time)
… possibly useful starting point for further development to suit project needs
•
Supports efficient, variable
-
resolution (quadtree
-
like) encoding for large regions if
required, no impact on search performance (actually, it gets faster!)
•
Database, platform, & vendor independent system; transparent & simple / rapid
operation (no “black boxes”); open source repository for code, suits multi
-
developer
model
•
Potential for ongoing interaction with local development “team” at CMAR as needed.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Preparing document for printing…
0%
Σχόλια 0
Συνδεθείτε για να κοινοποιήσετε σχόλιο