UNIVERTY OF DAR ES SALAAM

desertcockatooΔιαχείριση Δεδομένων

20 Νοε 2013 (πριν από 3 χρόνια και 6 μήνες)

74 εμφανίσεις


1

UNIVERTY OF DAR ES SALAAM


RESEARCH PROPOSAL FOR THE MASTERS OF SCIENCE IN
COMPUTER SCIENCE DEGREE BY THESIS


STAGE: I & II


1.0. NAME OF CANDIDATE: LUNGO, JUMA H.







Reg.No: HD/TP.1/2000









B.Sc. (Comp.) (Hons.) (DAR)


2.0.

NAME O
F SUPERVISOR: 1. Dr. S. C. N. Kitinya

2.

Dr. H. M. Twaakyondo


3.0.

DEPARTMENT AND FACULTY: DEPARTMENT OF
COMPUTER SCIENCE


FACULTY OF SCIENCE.


4.0.

PROPOSED DEGREE: M.Sc. (COMPUTER SCIENCE)


5.0.

TITLE:

Design And Implementation of a Data Warehouse
Prototype For The
Chief Academic Officer, University Of
Dar Es Salaam Within The Context of Relational Online
Analytical Processing (Data Analysis).




2





6.0

INTRODUCTION

6.1

GENERAL INTRODUCTION

IBM first published a technical article on information warehouse strategy
in 1988 (Ba
llard, Chuck. 1996). This is a strategy for satisfying business
needs for complex queries and insightful information with a managed
database. In 1990, William Inmon (Inmon, W. H. 1997) coined he phrase
“Data warehouse”. The ultimate goal of data warehousin
g is the creation
of a single, logical view of data, which may reside in many physically
disparate databases (Butler Group. 1996). “…traditional database
systems are good at recording and reporting what happened. A data
warehouse shows why” (Fisher, Lawr
ence. 1996).


Data warehouses represent the latest great paradigm of database
management. The earliest data management systems were hierarchical,
run on massive mainframes, and were used primarily for archival
purposes. The first big change came in the ear
ly 1980’s, with the
adoption of relational database systems, which have primarily
operational applications. These systems, typically run on minicomputers,
are used for online transaction processing (O.L.T.P.), for example, to
operate networks automated tel
ler machine. Now come Data warehouses,
commonly run on client/server networks of personal computers and
more powerful server machines. These latest systems are used for online
analytical processing (O.L.A.P.), an essentially strategic application.


Data w
arehouse organize and store data, from the operational
environment, over a long historical time perspective. Consequently, they

3

provide data found in the operational environment. Data warehouse
allows user to recognize data they want and, using simple quer
y tools,
create their own queries, based on solid repository of integrated,
historical data.


The concept of data warehouse is that: It’s a place where data extracted
from production systems in the enterprise is stored (Warner, Tim. 1995).
The University o
f Dar es Salaam as a big organization, there are
operational systems like: Admission systems, Accommodation system,
Examination record system, Master timetable, etc. all of these systems
generate data that are vital to the University decision makers. Data
warehouse is required to organize all of these data to be readily
accessible and meaningful to the Chief Academic Office to support their
decisions making.


This study is divided into two main parts. The first part of the study will
involve literature stu
dy, and documentation of the architecture, planning
and designing methods, implementation techniques and laying out
options for data ware house. This part of the research will be carried out
and documented to enhance future references. The second part of
the
research will be that of laboratory work. This will involve the real
development of the prototype of Data warehouse within the context of
Relational Online Analytical Processing (ROLAP).


6.2.

STATEMENT OF THE RESEARCH PROBLEM:

The frustrations of the 1970
s are felt more keenly today, because the
technology that facilitating sharing of data (network, communication
protocols, sophisticated Database Management Systems, Decision
support systems, etc.) are freely available, yet organizations still find that

4

da
ta is organized into functional silos, from which it is hard to extricate
what you want in other, related function (Jack D. Doyle. 1997).

At the University of Dar es Salaam, despite the availability of more and
more powerful computers on everyone’s desk a
nd communication
networks, large number of executives and decision makers can’t get their
hands on critical information that already exist in the University. One of
the executives of the University is the Chief Academic officer. As an
education institution
, the University every day creates data about
students, supporting programmes, staff etc, of which are important in
supporting the daily works of the Chief Academic office of the University,
but for the most part, this data is locked up in a myriad of manu
al and
computer systems and is exceedingly difficult for the chief academic
officer to get at.


We are intending to conduct a study to analyse, design and implement
data warehouse that will enable high improvement of information access
for the Chief Academ
ic Office.


According to Michael Haisten, 1998 the most powerful justifications for
opting Data warehouse investment in the Chief Academic office therefore
are:



Quality goals, since its typical objective are improving information
access,



Bringing the use
r in touch with their data,



Enhancing the quality of their decisions and



Providing cross
-
function integration of operation systems within
the Organisation.



5

The result obtained will then be useful for future development of
successful Data warehouse of the

Chief Academic office of the University
of Dar es Salaam.


6.3.

RESEARCH OBJECTIVES

The general aim of the research is to study the architecture, design and
implementation of Data warehouses by developing a model for Chief
Academic Office Data warehouse.


The
proposed research objectives, derived from this general aim are:



To study and document the architecture of Data warehouse,



To determine (identify) aspects, playing key roles in the design and
implementation of data warehouse,



To develop a University system

model (prototype) for Data
warehouse,



To test (validate) the model in a real life cases.


6.4

SIGNIFICANCE OF THE STUDY

The result obtained from this research will be used to develop Data
warehouse for the Chief Academic Office of the University. Also the
doc
umentation (report) of the research will be used as reference for any
other study on the topic of Data warehouse especially from the University
of Dar es Salaam.


This study too will encourage and challenge many organisation to opt for
data warehouse inve
stment in order to improve information access
within their firms, bringing the user of their information in touch with
their data, and providing cross
-
function integration of operation systems
within their organisation. Data warehouse for the Chief Academi
c Office

6

will enable the decision makers to access data, understood the data and
manipulate them while making decisions for the UDSM.


6.5

LITERATURE REVIEW

Data warehouse is defined as a subject


oriented, integrated, time
variant, non
-
volatile collection of

data in support of management’s
decision


making process (Inmon, W.H. 1996). Subject
-
Oriented means
the data warehouse focuses on the high
-
level concerns of the business,
as in contrary to operational systems, which deals with process, e.g.,
order proce
ssing, Billing system etc. Integrated implies that data being
stored in a consistent format. Time variant means each data point is
associated with a point in time. And non
-
volatile means the data does
not change once it gets into the warehouse (Jack D. Doy
le. 1997).


Ken Orr, 1996 stated that

Data warehouse is a field that grows out of
integration of a number of different technologies and experiences over the
last two decades. Data warehouse can be best represented as an
enterprise
-
wide framework for managi
ng informational data within the
organization. There are two fundamentally different types of information
systems in all organizations namely Information systems and Operation
systems.


Operational systems are the systems that help us run the enterprise on

day to day activities (
Ken Orr. 1996)
. The University of Dar es Salaam
has systems like Admission system, examinations record systems,
accommodation system, Payroll, Timetable etc. Because of their
importance to the University, operational systems were a
lmost always
the first to be computerized. Indeed, most large organizations couldn’t
operate without their operational systems and data that these systems
maintain. Other functions within the organization have to do with

7

planning, forecasting and managing
the organization. These are the
knowledge
-
based functions, which form the
Information system

of the
organization. Information systems have to do with analyzing data and
making decision, often major decisions about how the enterprise will
operate, now and i
n the future. Information data needs often span a
number of different areas and needs large amounts of different
operational data that are in summary form.


Data warehouse provide information to the knowledge
-
based function
(Decision Support Systems) withi
n the organization. The operational
systems generate data that have to be put and organized to the data
warehouse (
Vince Desio
). Consider fig.1: below.

Fig.1: The concept of data warehouse.


(Source:
http://www.datawarehouseconsulting.com/img2.gif
)

A Data warehouse can be physically centralized, logically centralized but
physically distributed, or simply distributed. With today’s powerful Local
Area Network based Database s
ervers, data warehouse can also take
advantage of the benefits of distributed computing.



8

Building a data warehouse is essentially a complex integration effort.
Literally hundreds of system components must be brought together to
work as an integrated appli
cation (
Vince Desio.

1998). The graphic on the
next page below represents only a high
-
level view of the basic
components that comprise a Data warehouse.

Fig.2: Data Warehouse Components






















DATA WAREHOUSE ARCHI
TECTURE.

A Data warehouse ar
chitecture is a way of representing the overall
structure of data communication, processing and presentation that
I
I
I
N
N
N
T
T
T
E
E
E
R
R
R
N
N
N
A
A
A
L
L
L



&
&
&















E
E
E
X
X
X
T
T
T
E
E
E
R
R
R
N
N
N
A
A
A
L
L
L



O
O
O
P
P
P
E
E
E
R
R
R
A
A
A
T
T
T
I
I
I
O
O
O
N
N
N
A
A
A
L
L
L



D
D
D
A
A
A
T
T
T
A
A
A







Warehouse
Meta Data



System of
Record



Mod
els



Stewardship

S
S
S
O
O
O
U
U
U
R
R
R
C
C
C
I
I
I
N
N
N
G
G
G





Transformati
on



Metadata



Integration



Conditioning



Aggregation



Initial vs.
Change

Load

D
D
A
A
T
T
A
A


W
W
A
A
R
R
E
E
H
H
O
O
U
U
S
S
E
E


R
R
E
E
P
P
O
O
S
S
I
I
T
T
O
O
R
R
Y
Y





RDBMS



Physical Meta
Data



Mult
-

Dimensional

I
I
N
N
F
F
O
O
R
R
M
M
A
A
T
T
I
I
O
O
N
N


A
A
C
C
C
C
E
E
S
S
S
S





Middleware



Performance
Management



Abstractions



User object



Prepara
tions

D
D
D
e
e
e
s
s
s
k
k
k
t
t
t
o
o
o
p
p
p
























T
T
T
o
o
o
o
o
o
l
l
l
s
s
s






Query



OLAP



WWW



Report



Graphics



Spread
Sheet



Meta data
Catalog


M
M
M
E
E
E
T
T
T
A
A
A
D
D
D
A
A
A
T
T
T
A
A
A



A
A
D
D
M
M
I
I
N
N
I
I
S
S
T
T
R
R
A
A
T
T
I
I
O
O
N
N



9

exists for end user computing within the enterprise. The architecture is
made up of a number of interconnected parts (
The Ken Orr Institute;
r
evised edition, 2000)
:

∙ Operational Data Base / External Data Base Layer

∙ Information Access Layer

∙ Data Access Layer

∙ Data Directory (Metadata) Layer

∙ Process Management Layer

∙ Application Messaging Layer

∙ Data Warehouse Layer

∙ Data Staging Lay
er


Operational Data Base / External Data Base Layer

The goal of data warehousing is to free the information that is locked up
in the operational data bases and to mix it with information from other,
often external, sources of data. Increasingly, large org
anizations are
acquiring additional data from outside data bases. This information
includes demographic, econometric, competitive and purchasing trends.
The so
-
called "information superhighway" is providing access to more
data resources every day.


Informa
tion Access Layer

The Information Access layer of the Data Warehouse Architecture is the
layer that the end
-
user deals with directly. In particular, it represents the
tools that the end
-
user normally uses day to day, e.g. Excel, Word,
Access, PowerPoint, S
AS, etc. This layer also includes the hardware and
software involved in displaying and printing reports, spreadsheets,
graphs and charts for analysis and presentation.

Data Access Layer

The Data Access layer of the Data Warehouse Architecture is involved
w
ith allowing the Information Access layer talk to the Operational Layer.

10

In the network world today, the common data language that has emerged
is SQL. The Data Access layer then is responsible for interfacing between
Information Access tools and Operationa
l Data Bases
.


Data Directory (Metadata) Layer

In order to provide for universal data access, it is absolutely necessary to
maintain some form data directory or repository of meta
-
data
information. Meta
-
data is the data about data within the enterprise. In

order to have a fully functional warehouse, it is necessary to have a
variety of meta
-
data available, data about the end
-
user views of data and
data about the operational data bases.


Process Management Layer


The Process Management layer is involved in s
cheduling the various tasks that must be
accomplished to build and maintain the data warehouse and data directory information.
The Process Management layer can be thought of as the scheduler or the high level job
control for the many processes (procedures)

that must occur to keep the Data Warehouse
up
-
to
-
date.

Application Messaging Layer

The Application Message layer has to do with transporting information
around the enterprise
-
computing network.


Data Warehouse (Physical) Layer

The (core) Data Warehouse is

where the actual data used primarily for
informational uses occurs.


Data Staging Layer

Data staging is also called copy management or replication management,
but in fact, it includes all of the processes necessary to select, edit,
summarize, combine and
load data warehouse and information access
data from operation and/or external databases
.


11


The knowledge of Data warehouse in Tanzania is new. Currently there is
no known Data warehouse in Tanzania. This research will then create
awareness to the Tanzania
n IT professionals and society in general to
utilize the power of data warehouse especially at higher learning
institutions like in the Universities where all necessary facilities for
building Data warehouses are present.


6.6

RESEARCH HYPOTHESIS



The architect
ure of the Data warehouse can be studied and
documented to become standard and known to every one
developing data warehouse.



There are key issues playing roles in the design and
implementation of data warehouse that need to be determined.



The existing expe
rtise and computer facilities at the University can
facilitate to develop a data warehouse.



The resulting Data warehouse Model could be tested in a real case
in order to evaluate its completeness.




7.0

METHODOLOGY

7.1

Study Area

The University of Dar es Salaam w
as born out of a decision taken on
March 25th, 1970, by the East African Authority, to split the then
University of East Africa into three independent universities for
Kenya, Uganda and Tanzania.


The University of Dar es Salaam consis
ts of six faculties, five institutes
and two colleges: Faculty of Arts and Social Sciences; Faculty of
Commerce and Management; Faculty of Education; Faculty of

12

Engineering; Faculty of Law; Faculty of Science; Institute of
Development
Studies; Institute of Kiswahili Research; Institute of Marine
Sciences; Institute of Production Innovation; Institute of
Resource Assessment; the University College of Lands and Architectural
Studies and the Muhimbili University Colleg
e of Health Sciences. The
University also operates a Computing Centre, a Library and four
bureaus: the Economic Research Bureau in the Faculty of Arts and
Social Sciences; the Bureau for Educational Research and Evaluation in
the Faculty of Education; the

Bureau for Industrial
Cooperation in the Faculty of Engineering and the University
Consultancy Bureau.


The University is situated on the west side of the city of Dar es Salaam,
occupying 1,625 acres on Observation Hill, 13 k.m. from
the centre of
the city of Dar es Salaam.



For purposes of maintaining East African inter
-
university academic
cooperation and communication, an Inter
-
University Council for East
Africa was set up in 1970. The Council has established an
Inter
-
University Exchange Programme, through which the University
admits students from other East African countries mainly Kenya and
Uganda. The University also admits students from several other
countries the world
-
over through establ
ished links, exchange
programmes or individual applications. Most of these students receive
their bursaries from their respective governments. Students from other
countries are considered for admission to both undergraduate and
postgraduate studies, subjec
t to the availability of vacancies.





13

7.2

Methodology

A short visit will be made to the Chief Academic Office. This visit is
intended to familiarize the researcher and the stakeholders and also will
enable an initial study of how information flows in and o
ut of the
CACO’s office.


7.2

Data Collection techniques

Observation

The aim of including this data collection technique is to conduct a
detailed notation of behaviors, events and the contexts surrounding the
Chief Academic Office. To fulfill this, physica
l observations of what tools
the CACO have that are used to collect analyze and disseminating
information will be conducted.


Interviews

An interview will be held between the researcher and the Chief Academic
Office staff. The purpose of interview is to fi
nd out what is in or on some
else’s mind (John W. Best & James V. Kahn. 1993). Questions will be
designed in such a way that it will enable us to capture most information
we need that will help us in our research.


Case Study

Case study should help in “cap
turing the knowledge of practitioners and
developing theories from it”.

A case study methodology is well suited to identify key events and actors
and to linking them in a casual chain.

The case strategy is particularly well suited to IS research because th
e
technology is relatively new and interest has shifted to organizational
rather than technical issues.

Case study is chosen because of its abilities to:


14



Give the possibility to generate theories from practice (as a
preparation stage for developing the mod
el of Data warehouse);



Allow to understand the nature and complexity of the processes
taking place in Data warehouse;



Research an area in which few previous studies have been carries
out;



Research an area in which it is necessary to measure variables,
but
there is no a priori knowledge of what the variables of interest
will be. In this case the variables are aspects, which are necessary
to determine and estimate their role.


7.3

EXPECTED RESULTS OF THE RESEARCH


Theoretical Results

The main theoretical result o
f the research will be the model, which
supports Design and implementation of Data warehouse. The model
should comply with the ongoing Information Plan Policy (IPP) at the
University of Dar es Salaam. The model could include methods,
techniques and/or inst
rumentation, which have to be able to support the
Design and Implementation of Data warehouses in Tanzania.


Practical results

The main practical result of the research should be the realization of the
Design and implementation of
Chief Academic office Dat
a warehouse

of the University of Dar es Salaam. The success of this part of the
research depends on the full support and willingness of the technical
staff and management of already installed systems to realize that this
research will help in their daily n
eeds of information.




15

8.0

REFERENCE/BIBLIOGRAPHY:

1.

Jack D. Doyle.(1997).

Informed Decision Making Through
Data warehousing.
http://dhrinfo.hr.state.or.us/intranet/tands/Dwpap/DWWHITEP.htm

2.

Vince Desio. Data warehouse Components
.
http://www.datawarehouseconsulti
ng.com/page3.html

3.

Ken Orr. (1996). Data warehousing Technology.

The Ken Orr
Institute; revised edition, 2000.

4.

Roger Burlton. (1998). Data warehousing in the Knowledge
Management Cycle.
http//datawarehouse.dci.com/articles
.

5.


6.

Ralph Kimball The Data warehouse

Life Cycle Toolkit

7.

Building the Data warehouse by William H. Inmon

8.

Data warehouse Design Solutions by Christopher Adamson,
Michael Venerble.

9.

SQL Server 7 Data warehousing by Michael Abbey, Ian
Abramson, Larry Barner, be Taub, Michael J. Corey.

10.

High perfo
rmance Oracle Data warehousing by Donald
Burleson.

11.

Data Preparation for Data Mining by Dorian Pyle

12.

Data warehousing: Architecture and Implementataion by
Mark Humphries, Michael w. Hawkins, Michelle C. Dy.

13.

Butler Group. 1996. Business Case for Data Warehou
sing.
Strategies and Technologies. October 1996, Butler Group,
UK.
http//www.butlergroup.co.uk/manguide/dwuk1096/conten
ts.htm.

14.

Fisher, Lawrence. 1996. Along the Infobahn. Data
Warehouses. Third Quarter, 1996. Strategy & Business,

16

BoozAllen & Hamilton Inc.
http//www.strategy
-
business.com/technology/96308/page1.html

15.

Boar, Bernard (Bernie). 1996. Understanding Data
Warehousing Strategically. White paper commissioned by
NCR's Communication Industry Line of Business. June 14,
1996. The Data Warehousing Institute
, Gaithersburg, MD.
http://www.tekptnr.com/tpi/tdwi/review/bboar1.htm.pp.25

16.

Imirie, Peggy. 1996. Your Data Warehouse: A Business
Success or Science Project? Lesson from the Experts. 29
December 1996. The Data Warehousing Institute,
Gaithersburg, MD. http:/
/www.dw
-
institute.com/lessons/sciproj.htm. pp. 2.

17.

Ballard, Chuck. 1996. Strategies to make your Data
Warehouse a Success. Lesson from the Experts. December
29,1996. The Data Warehousing Institute, Gaithersburg,
MD. http://www.dw
-
institute.com/lessons/strat
eg.htm
pp.2.

18.

Byte. 1997. Architectural Distinctions. June 1997.
http://www.byte.com/art/9706/sec20/art4.htm.

19.

Eckerson, Wayne W. 1994. Implementing Access to
Distributed Data Using a Data Warehouse Strategy. Patricia
Seybold Group, Distributed Computing Mo
nitor Case Study,
September 1994.
http://www.psgroup.com/cases/1994/cs994d.htm
.

20.

Barbara, Gaskin 1998.

Realizing the Strategic Value of
Data Warehouses (
Decision Support Technology).





17











9.0

OTHER INFORMATIONS:

9.1:

Financial Requirement:

The proposed study is to be financed by the University of Dar es
Salaam. The technical assistance and equipment facilities will be
provided by the Department of Computer Science.


9.1.1:

BUDGET:

(a).

Uni
versity costs:


DESCRIPTION

YEAR 1

SUBSQUENT YEAR

SPONSOR

Tuition fees

950,000/=

950,000/=

UDSM

Application fee

10,000/=

-

-
do
-

Registration fee

20,000/=

-

-
do
-

Thesis Supervision

200,000/=

200,000/=

-
do
-

Medical capitation fee

100,000/=

100,000/=

-
do
-

Special Faculty Requirement

100,000/=

100,000/=

-
do
-

Research Field Cost

750,000/=

-

-
do
-

TOTAL

2,130,000/=

1,350,000/=

-
do
-


(b).

Student costs:

DESCRIPTION

YEAR 1

SUBSQUENT YEAR

SPONSOR

Caution money

2,000/=

-

UDSM

Student Union

1,200/=

1,200/=

-
do
-

Books

300,000/=

300,000/=

-
do
-


18

Stationary

50,000/=

50,000/=

-
do
-

Thesis Production

-

150,000/=

-
do
-

Stipend (based on
130,000/=per month)


1,560,000/=


1,560,000/=


-
do
-

TOTAL

1,913,200/=

2,061,200/=

-
do
-


9.1.2:

RESEARCH/FIELD AND MATERIAL COST
S (Computer Lab.)

Up
-
keep allowance and transport

530,000/=

Processing fee

120,000/=

Electrical and electronics components

100,000/=

Subtotal

750,000/=





9.1.3:

RESEARCH PROPOSAL PRODUCTION:

Paper 5rims @ 5,000/=

25,000/=

Secretarial services, 30 pa
ges @ 600/=

18,000/=

Photocopy, Department level 30 pages @40/=, 20 copies

24,000/=

Photocopy, Faculty level 30 pages @40/=, 20 copies

24,000/=

Photocopy, Senate level, 30 pages @40/=, 20 copies

24,000/=

Subtotal

115,000/=


9.1.4:

THESIS PRODUCTION

P
aper 5rims @ 5,000/=

15,000/=

Secretarial services 250 pages @ 600/=

15,000/=

Diskettes 3 boxes @ 5,000/=

15,000/=

Photocopy, 250 pages @40/=, 4 copies

40,000/=

Loose bound 4 copies @ 5,000/=

20,000/=

Final binding 4 copies @ 6,000/=

24,000/=

Subtota
l

264,000/=

TOTAL

1,129,000/=








19







20

9.2:

RESEARCH SCHEDULE


ACTIVITY

2000/2001

2001/2002


Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Jun

Jul.

Aug.

Sep.

Registration,
literature
review,

Research
Pr
oposal.
























Data
warehouse
planning,
Analysis and
Design.
























Data
warehouse
Implementat
ion and
Testing.
























Thesis
write
-
up,
production
&
submission.


























21

9.3:

COMMENTS


Dat
e:...............................................................................Signature:...........................





Name:

LUNGO, J. H. (Reg.No: HD/TP. 1/2000)










(candidate)


Supervisor's Comments.

...........................................
.........................................................................................
.............................................................................................................................
.......
...................................
.................................................................................................
Date:..............................................................................Signature:............................









Name:












(Superviso
r)


Head of Department's Comments

.............................................................................................................................
.......
..........................................................................................
..........................................
.............................................................................................................................
.......
..................................................................................
..................................................
Date:.........................................................................Signature:.................................







Name:


Dr. H. Twaakyondo


The Head, Department of Computer S
cience.