PDF Format - Girder-Slab

dearmeltedΠολεοδομικά Έργα

25 Νοε 2013 (πριν από 3 χρόνια και 9 μήνες)

136 εμφανίσεις

THE GIRDER-SLAB
®
SYSTEM
The Combined Advantages of
Structural Steel & Flat Plate Concrete
2013
DESIGN
GUIDE
V
2.0
1
D
eveloped by Girder-Slab Technologies LLC, the Girder-Slab
®

System is a steel and precast hybrid, the fi rst to use precast slabs
with an integral steel girder to form a composite monolithic
structural slab assembly.
This innovative technology uses proven materials long available
within the construction industry. The Girder-Slab System is ideal
for mid to high-rise residential construction. This lightweight
assembly develops composite action enabling it to carry
signifi cant loads.
A special steel beam is used as an interior girder supporting the
precast slab on its bottom fl ange. The web and top fl ange are
concealed within the plane of the slab. The fl at structural slab
permits minimum and variable fl oor-to-fl oor heights.
The Girder-Slab System is fi re rated for use in high-rise buildings
when constructed in accordance with Underwriters Laboratories
Inc. Floor-Ceiling Design (USA) UL K912 and (Canada) ULC J500.
The Girder-Slab System in combination with a structural steel
frame offers a complete steel and concrete superstructure.
Unlike cast-in-place concrete structures, the Girder-Slab System
uses off site prefabricated components that are quickly erected on
site.
The Girder-Slab System consists of an interior girder (known as
an open-web dissymmetric beam or D-Beam
®
), and prestressed
hollow-core slabs, connected by cementitious grout.
Applications include fl oor and roof slabs, which are supported
by a steel frame that resists all gravity and lateral loads. WF
beams are typically used at spandrel, shaft and other conditions.
The system integrates easily with all other lateral resisting
systems such as concrete or masonry shear walls.
The Girder-Slab System and the open web D-Beam
®
technology
are the result of more than ten years of research and development.
In order to develop a rational analysis that would maximize the
use of this technology, extensive laboratory testing and analysis
was undertaken. This included both small-scale specimens and
full-scale assemblies in order to simulate actual bays. Each
assembly was load tested in excess of 100 psf, well above required
residential live loads. The D-Beam Girder performed without failure.
The DB-8 is used for 8” assemblies, while the DB-9 is used for 2”
topped or 10” untopped assemblies. Depending on project specifi cs,
bay sizes of 20' x 28' are very effi cient.
As a result of extensive testing it was determined that the
transformed section is as illustrated below:
D-BEAM
GIRDER
COLUMN
PRECAST SLAB
GROUT
GIRDER SLAB
COMPOSITE STEEL AND PRECAST SYSTEM
COMPOSITE STEEL AND PRECAST SYSTEM
®
GIRDER SLAB
®
REVERSE
POSITIVE
FONTS: ITC LUBALIN GRAPH DEMI & HELVETICA BOLD
COLORS: PMS 146 & BLACK
Transformed Section
Transformed Section
Neutral Axis
Slab
Grout
Steel
®
Full Size Test Assembly
2
Girder-Slab
®
System Application
The Girder-Slab System in combination with a structural steel
frame offers a complete steel and concrete superstructure. It is
ideal for use in mid to high-rise residential structures such as
hotels, student housing, apartments and condominiums.
8” precast slabs generally span as long as 28'-0". Longer plank
spans are possible, and the system can also be used with 10”
precast slabs.
The Girder-Slab System is fi re rated for use in all residential
buildings when constructed in accordance with Underwriters
Laboratories Inc. Floor-Ceiling Design (USA) UL K912 and
(Canada) ULC J500.
The Girder-Slab System greatly improves construction operations
and the ability to meet critical deadlines.
Ironworkers erect both the structural
steel and precast hollow core slabs.
Hollow core slabs accommodate various architectural designs.
Perimeter spandrel beams are not required.
D-Beams
®
spanning the length of the building
between one interior column line.
D-Beams
®
spanning the width of the building
between multiple interior column lines.
Girder-Slab
®
System Technology
This unique design technology is the fi rst ever to use precast
slabs with an integral steel girder to form a monolithic structural
slab assembly. The Girder-Slab System consists of an interior
girder (known as an open-web dissymmetric beam or D-Beam)
supporting precast prestressed hollow core slabs on its bottom
fl ange. With standard cement grout, the Girder-Slab System
develops composite action enabling it to support signifi cant live
loads. Grouting is easily achieved after slabs are set in place.
The Girder-Slab System has advantages over cast-in-place
concrete superstructures. It is low cost, lightweight and
offers rapid construction and assembly.
Unlike cast-in-place concrete
structures, the Girder-Slab System
uses off site prefabricated materials that
are quickly erected on site.
The underside of slab is ready
made for ceiling fi nish.
The innovative D-Beam Girder was
designed to allow the precast slab to
sit on its bottom fl ange concealing its
top fl ange and web. No formwork or
shoring is needed.
Allows faster access for the work of
other trades. Coring of slabs for utilities
is easier and permits fi nal adjustment.
3
A sample D-Beam
®
Girder used
for testing is fully encapsulated
by hardened grout.
A gypsum wall board ceiling can also be used under
the slab to conceal the bottom fl ange of the D-Beam.
After slabs are set, grout is easily placed
fl owing around the D-Beam, through its
web openings and 12” into a reinforced cell.
A gypsum wall board ceiling can also be used under
After grouting, the composite slab system is
complete and ready for use. Finish fl oor leveling
material is normally completed after the building
is enclosed and interior studs are installed.
Precast slabs can be set in place in nearly
any climate condition including freezing
temperatures.
Girder-Slab
®
System Availability
The application and use of the Girder-Slab System
technology requires design by a registered professional
engineer or architect. This Design-Guide provides all
required engineering information and is available for
use by industry professionals.
The Girder-Slab System and D-Beam Girder are
distributed and assembled by steel fabricators.
Contact your preferred steel fabricators for budgeting,
proposals and system availability.
Girder-Slab
®
System Benefi ts
• Low fl oor-to-fl oor heights, minimize building height
• Super-fast structure and building completion
• Reduced building structure weight
• Floor plan design fl exibility
• Limited weather impact (including cold climates)
• Structure assembly is one process, one source
• Integrates well with mixed use spaces below
• Meets AISC tolerance standards
• Meets 2-3 hour fi re ratings using UL K912 - ULC J500
• Meets required sound (STC) ratings
• Limited on-site labor
• Reduced on-site overhead costs
• Eliminates/reduces soffi ts
• Factory made quality components
4
The grouting process is easily
performed with a few tradesmen.
The cement grout is liquefi ed and
pumped through a hose.
The underside of slab is free of support beams
providing a fl at surface for ducts and piping
systems. Low fl oor-to-fl oor heights are easily
achieved.
The underside of slab is free of support beams
Precast slabs are easily set in place.
The D-Beam
®
Girder self centers each slab.
Precast slabs are easily set in place.
Designation Weight Avg. Area d Thickness
t
w
Depth
Size a b
Top Bar
w x t
lb/ft in
2
in in in
in
in x in
Web Included Web Parent Beam
DB 8 x 37
DB 8 x 38
DB 8 x 39
DB 8 x 35
36.7
37.2
39.2
34.7
10.8
10.9
11.5
10.2
8
8
8
8
3/8
3/8
3/8
5/16
W 12 x 53
W 10 x 54
W 12 x 58
W 10 x 49
2
3
7/8
1
3/4
4
5
3
1/8
5
1/4
3 3 x 1
3 x 1
3 x 1
3 x 1
DB 8 x 40
39.8
11.7 8
5/16
W 10 x 49
3
3
1/2
3 x 1
1/2
DB 8 x 41
40.2 11.8 8 7/16 W 10 x 60
3
3/4
3
1/4
3 x 1
DB 8 x 42
41.8 12.3
8 3/8 W 12 x 53 1 5
1/2
3 x 1
1/2
DB 8 x 43
42.3 12.4
8
3/8
W 10 x 54 2
7/8
3
5/8
3 x 1
1/2
DB 8 x 45
44.3 13.0
8 3/8 W 12 x 58 3/4 5
3/4
3 x 1
1/2
DB 8 x 46
45.3 13.3 8
7/16 W 10 x 60 2
3/4
3
3/4
3 x 1
1/2
*
SHEAR MAY GOVERN
*
8” D-Beam
®
Dimensions & Sample Calculation
5
D‐Beam® Top Fiber Stress OK
f
top DB
=
29.3 ksi
0.60F
y
=
30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
= 19.8 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 8x45
Parent Beam Yield Stress (F
y
) = 50 ksi LL Deflection Allowable 

LL
= L/360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.22 in
Span Information L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
=
35.9 ksi
Precast Slab Span = 28 ft 0.90F
y
= 45.0 ksi
Precast Slab both D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 15.5 ksi
Precast Slab Weight = 56 psf
0.60F
y
=
30.0 ksi
Grout 0 in D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140
lb/ft
3
f
bot DB
= 32.0 ksi
Compressive Strength of Grout = 4000 psi 0.90F
y
= 45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
=
28.7 ksi
0.66F
y
=
33.0 ksi
Loads
Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.1 psf
f
top slab
= 1121 psi
Composite Dead Load (e.g. topping) = 0 psf
0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout
 Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
=
1003 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
=
1800 psi
Live Load Reduction = 27.8% Shear
 Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.0 ksi
Moments
0.40F
y
= 20.0 ksi
Noncomposite Dead Load Moment = 67.05 kip‐ft
Composite Dead Load Moment = 0.00 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐
ft Noncomposite Full
Total Moment = 116.83 kip‐ft (D
‐Beam® Alone) Composite
Shears
c
bot DB
in 3.22 5.20
Noncomposite Dead Load Shear = 14.90 kips
c
top slab
in ‐‐‐ 3.43
Composite Dead Load Shear = 0.00 kips
c
top DB
in 4.78 2.80
Partition Load Shear = 3.78 kips
I
g
in
4
131 357
Live Load Shear = 7.28 kips
I
cr
in
4
‐‐‐ 254
Total Shear = 25.96 kips
I
ef
f
in
4
‐‐‐ 306
Deflections (negative values indicate downward deflection)
S
bot DB
in
3
40.7 48.8
(optional) D‐Beam® Camber = 0.75 in
S
top slab
in
3
‐‐‐ 74.0
Noncomposite Dead Load Deflection = ‐1.03 in
S
top DB
in
3
27.4 90.6
Net Dead Load Deflection incl. Camber = ‐0.28 in Noncomp.
 Dead
Composite Dead Load Deflection = 0.00 in Comp.
 Dead
Partition Load Deflection = ‐0.11 in Partition
Live Load Deflection = ‐0.22 in
(=L/1001)
Live
Total (Net) Deflection due to all loads = ‐0.61 in
(=L/357)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
D‐Beam® Top Fiber Stress OK
f
top DB
= 29.3 ksi
0.60F
y
=
30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
= 19.8 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 8x45
Parent Beam Yield Stress (F
y
) =
50 ksi LL
 Deflection
Allowable 

LL
= L/
360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.22 in
Span Information
L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D
‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
=
35.9 ksi
Precast Slab Span = 28 ft
0.90F
y
=
45.0 ksi
Precast Slab
both
D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 15.5 ksi
Precast Slab Weight = 56 psf
0.60F
y
= 30.0 ksi
Grout
0 in
D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140 lb/ft
3
f
bot DB
=
32.0 ksi
Compressive Strength of Grout = 4000 psi
0.90F
y
=
45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
= 28.7 ksi
0.66F
y
=
33.0 ksi
Loads Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.1 psf
f
top slab
=
1121 psi
Composite Dead Load (e.g. topping) = 0 psf 0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
= 1003 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
=
1800 psi
Live Load Reduction = 27.8% Shear Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.0 ksi
Moments 0.40F
y
= 20.0 ksi
Noncomposite Dead Load Moment = 67.05 kip‐ft
Composite Dead Load Moment = 0.00 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐ft Noncomposite Full
Total Moment = 116.83 kip‐ft (D‐Beam® Alone) Composite
Shears c
bot DB
in 3.22 5.20
Noncomposite Dead Load Shear = 14.90 kips c
top slab
in ‐‐‐ 3.43
Composite Dead Load Shear = 0.00 kips
c
top DB
in 4.78 2.80
Partition Load Shear = 3.78 kips
I
g
in
4
131 357
Live Load Shear = 7.28 kips I
cr
in
4
‐‐‐ 254
Total Shear = 25.96 kips I
ef
f
in
4
‐‐‐ 306
Deflections (negative values indicate downward deflection) S
bot DB
in
3
40.7 48.8
(optional) D‐Beam® Camber = 0.75 in
S
top slab
in
3
‐‐‐ 74.0
Noncomposite Dead Load Deflection = ‐1.03 in
S
top DB
in
3
27.4 90.6
Net Dead Load Deflection incl. Camber = ‐0.28 in Noncomp. Dead
Composite Dead Load Deflection = 0.00 in Comp. Dead
Partition Load Deflection = ‐0.11 in Partition
Live Load Deflection = ‐0.22 in
(=L/1001)
Live
Total (Net) Deflection due to all loads = ‐0.61 in
(=L/357)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
D-Beam
®
Calculator Reference Tool Version 2.0
Example Problem: 8 Inch D-Beam with 8 Inch Hollow Core
Available at
www.Girder-Slab.com
Design Checks - Composite
Design Checks - Noncomposite
D‐Beam® Top Fiber Stress OK
f
top DB
=
29.3 ksi
0.60F
y
= 30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
=
19.8 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 8x45
Parent Beam Yield Stress (F
y
) =
50 ksi LL
 Deflection
Allowable 
LL
= L/360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.22 in
Span Information
L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D
‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
= 35.9 ksi
Precast Slab Span = 28 ft
0.90F
y
=
45.0 ksi
Precast Slab both
D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 15.5 ksi
Precast Slab Weight = 56 psf
0.60F
y
=
30.0 ksi
Grout 0 in
D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140 lb/ft
3
f
bot DB
=
32.0 ksi
Compressive Strength of Grout = 4000 psi
0.90F
y
=
45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
=
28.7 ksi
0.66F
y
= 33.0 ksi
Loads
Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.1 psf
f
top slab
=
1121 psi
Composite Dead Load (e.g. topping) = 0 psf
0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout
 Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
= 1003 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
= 1800 psi
Live Load Reduction = 27.8% Shear
 Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.0 ksi
Moments
0.40F
y
=
20.0 ksi
Noncomposite Dead Load Moment = 67.05 kip‐ft
Composite Dead Load Moment = 0.00 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐ft Noncomposite Full
Total Moment = 116.83 kip‐ft (D‐Beam® Alone) Composite
Shears
c
bot DB
in 3.22 5.20
Noncomposite Dead Load Shear = 14.90 kips c
top slab
in ‐‐‐ 3.43
Composite Dead Load Shear = 0.00 kips
c
top DB
in 4.78 2.80
Partition Load Shear = 3.78 kips I
g
in
4
131 357
Live Load Shear = 7.28 kips I
cr
in
4
‐‐‐ 254
Total Shear = 25.96 kips
I
ef
f
in
4
‐‐‐ 306
Deflections (negative values indicate downward deflection) S
bot DB
in
3
40.7 48.8
(optional) D‐Beam® Camber = 0.75 in
S
top slab
in
3
‐‐‐ 74.0
Noncomposite Dead Load Deflection = ‐1.03 in
S
top DB
in
3
27.4 90.6
Net Dead Load Deflection incl. Camber = ‐0.28 in Noncomp. Dead
Composite Dead Load Deflection = 0.00 in Comp. Dead
Partition Load Deflection = ‐0.11 in Partition
Live Load Deflection = ‐0.22 in
(=L/1001)
Live
Total (Net) Deflection due to all loads = ‐0.61 in
(=L/357)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
*
*
*
*
*
Design Checks - Composite
Design Checks - Noncomposite
6
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for each material.

To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but modifi ed width.
For the material properties given:

7.2 inches of concrete slab = 1 inch of steel
8 inches of grout = 1 inch of steel
Note: Graphical representation only.
The online D-Beam Calculator Reference Tool v2.0 is intended for use
only with assemblies identical to S1 and S3 in Girder-Slab Design Guide v2.0.
D-Beam® Profile
C

top slab
C

top D-Beam
I

g
C

bot D-Beam
in
in
in
4
in
I

cr
in
4
I

eff
in
4
S

bot D-Beam
in
3
S

top slab
in
3
S

top D-Beam
in
3
Load Resisted by
Each Cross Secti on
3.22
---
4.78
131
---
---
40.7
---
27.4
Noncomposite
Dead Load
5.20
3.43
2.80
357
254
306
48.8
74.0
90.6
Composite
Dead Load, Parti ti on Load,
Live Load
Noncomposite
(D-Beam® Alone)
Full Composite
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Section Properties From Sample Calculation
Designation Weight Avg. Area d Thickness
t
w
Depth
Size a b
Top Bar
w x t
lb/ft in
2
in in in
in
in x in
Web Included Web Parent Beam
DB 9 x 45
DB 9 x 46
DB 9 x 48
DB 9 x 41
44.2
45.8
47.2
40.7
13.0
13.5
13.9
12.0
9
3/4
9
5/8
9
13/16
9
5/8
7/16
3/8
7/16
3/8
W 14 x 68
W 14 x 61
W 14 x 74
W 14 x 61
3
1/2
2
3/8
3
1/2
3
3/8
5
1/4
5
3/4
5
5/16
5
1/4
3 x 1
3 x 1
3 x 1
1/2
3 x 1
DB 9 x 49
49.3
14.5
9
3/4
7/16
W 14 x 68 2
1/2
5
3/4
3 x 1
1/2
52.3 15.4
9
13/16
7/16 W 14 x 74
2
1/2
5
13/16
3 x 1
1/2
Standard Wide Flange Two Equal Castellated Tees Two D-Beam
®
Girders
Flat Bar
DB 9 x 52
D‐Beam® Top Fiber Stress OK
f
top DB
=
23.1 ksi
0.60F
y
=
30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
= 12.5 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 9x52
Parent Beam Yield Stress (F
y
) = 50 ksi LL Deflection Allowable 

LL
= L/360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.17 in
Span Information L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
=
35.6 ksi
Precast Slab Span = 28 ft 0.90F
y
= 45.0 ksi
Precast Slab both D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 23.3 ksi
Precast Slab Weight = 56 psf
0.60F
y
=
30.0 ksi
Grout 0 in D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140
lb/ft
3
f
bot DB
= 26.5 ksi
Compressive Strength of Grout = 4000 psi 0.90F
y
= 45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
=
26.2 ksi
0.66F
y
=
33.0 ksi
Loads
Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.6 psf
f
top slab
= 1359 psi
Composite Dead Load (e.g. topping) = 25 psf
0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout
 Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
=
1215 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
=
1800 psi
Live Load Reduction = 27.8% Shear
 Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.7 ksi
Moments
0.40F
y
= 20.0 ksi
Noncomposite Dead Load Moment = 67.53 kip‐ft
Composite Dead Load Moment = 28.35 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐
ft Noncomposite Full
Total Moment = 145.66 kip‐ft (D
‐Beam® Alone) Composite
Shears
c
bot DB
in 3.44 5.20
Noncomposite Dead Load Shear = 15.01 kips
c
top slab
in ‐‐‐ 3.61
Composite Dead Load Shear = 6.30 kips
c
top DB
in 6.37 4.61
Partition Load Shear = 3.78 kips
I
g
in
4
224 443
Live Load Shear = 7.28 kips
I
cr
in
4
‐‐‐ 347
Total Shear = 32.37 kips
I
ef
f
in
4
‐‐‐ 395
Deflections (negative values indicate downward deflection)
S
bot DB
in
3
65.1 66.6
(optional) D‐Beam® Camber = 0.50 in
S
top slab
in
3
‐‐‐ 95.9
Noncomposite Dead Load Deflection = ‐0.61 in
S
top DB
in
3
35.1 75.1
Net Dead Load Deflection incl. Camber = ‐0.11 in Noncomp.
 Dead
Composite Dead Load Deflection = ‐0.14 in Comp.
 Dead
Partition Load Deflection = ‐0.09 in Partition
Live Load Deflection = ‐0.17 in
(=L/1294)
Live
Total (Net) Deflection due to all loads = ‐0.50 in
(=L/428)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
7
D-Beam
®
Calculator Reference Tool Version 2.0
Example Problem: 9 Inch D-Beam with 8 Inch Hollow Core Plus a 2 Inch Concrete Topping
Available at
www.Girder-Slab.com
Design Checks - Composite
D‐Beam® Top Fiber Stress OK
f
top DB
= 23.1 ksi
0.60F
y
=
30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
= 12.5 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 9x52
Parent Beam Yield Stress (F
y
) =
50 ksi LL
 Deflection
Allowable 

LL
= L/
360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.17 in
Span Information
L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D
‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
=
35.6 ksi
Precast Slab Span = 28 ft
0.90F
y
=
45.0 ksi
Precast Slab
both
D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 23.3 ksi
Precast Slab Weight = 56 psf
0.60F
y
= 30.0 ksi
Grout
0 in
D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140 lb/ft
3
f
bot DB
=
26.5 ksi
Compressive Strength of Grout = 4000 psi
0.90F
y
=
45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
= 26.2 ksi
0.66F
y
=
33.0 ksi
Loads Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.6 psf
f
top slab
=
1359 psi
Composite Dead Load (e.g. topping) = 25 psf 0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
= 1215 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
=
1800 psi
Live Load Reduction = 27.8% Shear Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.7 ksi
Moments 0.40F
y
= 20.0 ksi
Noncomposite Dead Load Moment = 67.53 kip‐ft
Composite Dead Load Moment = 28.35 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐ft Noncomposite Full
Total Moment = 145.66 kip‐ft (D‐Beam® Alone) Composite
Shears c
bot DB
in 3.44 5.20
Noncomposite Dead Load Shear = 15.01 kips c
top slab
in ‐‐‐ 3.61
Composite Dead Load Shear = 6.30 kips
c
top DB
in 6.37 4.61
Partition Load Shear = 3.78 kips
I
g
in
4
224 443
Live Load Shear = 7.28 kips I
cr
in
4
‐‐‐ 347
Total Shear = 32.37 kips I
ef
f
in
4
‐‐‐ 395
Deflections (negative values indicate downward deflection) S
bot DB
in
3
65.1 66.6
(optional) D‐Beam® Camber = 0.50 in
S
top slab
in
3
‐‐‐ 95.9
Noncomposite Dead Load Deflection = ‐0.61 in
S
top DB
in
3
35.1 75.1
Net Dead Load Deflection incl. Camber = ‐0.11 in Noncomp. Dead
Composite Dead Load Deflection = ‐0.14 in Comp. Dead
Partition Load Deflection = ‐0.09 in Partition
Live Load Deflection = ‐0.17 in
(=L/1294)
Live
Total (Net) Deflection due to all loads = ‐0.50 in
(=L/428)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
Design Checks - Noncomposite
Design Checks - Composite
D‐Beam® Top Fiber Stress OK
f
top DB
=
23.1 ksi
0.60F
y
= 30.0 ksi
D‐Beam® Bottom Fiber Stress OK
f
bot DB
=
12.5 ksi
0.60F
y
= 30.0 ksi
D‐Beam®
Standard D‐Beam® = DB 9x52
Parent Beam Yield Stress (F
y
) =
50 ksi LL
 Deflection
Allowable 
LL
= L/360 OK
Top Bar Yield Stress (F
y
) = 50 ksi

LL
= ‐0.17 in
Span Information
L/360 = ‐0.60 in
D‐Beam® Span = 18 ft D
‐Beam® Top Fiber Stress ‐ Check 1 OK
Composite Section Effective Width = 5 ft
f
top DB
= 35.6 ksi
Precast Slab Span = 28 ft
0.90F
y
=
45.0 ksi
Precast Slab both
D‐Beam® Top Fiber Stress ‐ Check 2 OK
Nominal Slab Thickness = 8 in.
f
top DB
= 23.3 ksi
Precast Slab Weight = 56 psf
0.60F
y
=
30.0 ksi
Grout 0 in
D‐Beam® Bottom Fiber Stress ‐ Check 1 OK
Unit Weight of Grout = 140 lb/ft
3
f
bot DB
=
26.5 ksi
Compressive Strength of Grout = 4000 psi
0.90F
y
=
45.0 ksi
D‐Beam® Bottom Fiber Stress ‐ Check 2 OK
f
bot DB
=
26.2 ksi
0.66F
y
= 33.0 ksi
Loads
Precast Slab Top Fiber Stress OK
Noncomposite Dead Load (Slab + Grout + Beam) =
59.6 psf
f
top slab
=
1359 psi
Composite Dead Load (e.g. topping) = 25 psf
0.45f'
c,slab
= 2250 psi
Partition Load = 15 psf Grout
 Top Fiber Stress OK
Basic Floor Live Load = 40 psf
f
top grout
= 1215 psi
Consider Live Load Redution (IBC 2012) = Yes
0.45f'
c,grout
= 1800 psi
Live Load Reduction = 27.8% Shear
 Stress in the Web OK
Reduced Live Load = 28.9 psf
f
v,web
= 12.7 ksi
Moments
0.40F
y
=
20.0 ksi
Noncomposite Dead Load Moment = 67.53 kip‐ft
Composite Dead Load Moment = 28.35 kip‐ft
Partition Load Moment = 17.01 kip‐ft
Live Load Moment = 32.77 kip‐ft Noncomposite Full
Total Moment = 145.66 kip‐ft (D‐Beam® Alone) Composite
Shears
c
bot DB
in 3.44 5.20
Noncomposite Dead Load Shear = 15.01 kips c
top slab
in ‐‐‐ 3.61
Composite Dead Load Shear = 6.30 kips
c
top DB
in 6.37 4.61
Partition Load Shear = 3.78 kips I
g
in
4
224 443
Live Load Shear = 7.28 kips I
cr
in
4
‐‐‐ 347
Total Shear = 32.37 kips
I
ef
f
in
4
‐‐‐ 395
Deflections (negative values indicate downward deflection) S
bot DB
in
3
65.1 66.6
(optional) D‐Beam® Camber = 0.50 in
S
top slab
in
3
‐‐‐ 95.9
Noncomposite Dead Load Deflection = ‐0.61 in
S
top DB
in
3
35.1 75.1
Net Dead Load Deflection incl. Camber = ‐0.11 in Noncomp. Dead
Composite Dead Load Deflection = ‐0.14 in Comp. Dead
Partition Load Deflection = ‐0.09 in Partition
Live Load Deflection = ‐0.17 in
(=L/1294)
Live
Total (Net) Deflection due to all loads = ‐0.50 in
(=L/428)
Type of Construction = Unshored
Project Name / Job #
D‐Beam® Calculator Reference Tool Version 2.0
Design Checks ‐ Noncomposite
Design Checks ‐ Composite
Section Properties
Load Resisted by Each 
Cross Section
9” D-Beam
®
Dimensions & Sample Calculation
Design Checks - Composite
8
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for each material.

To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but modifi ed width.
For the material properties given:

7.2 inches of concrete slab = 1 inch of steel
8 inches of grout = 1 inch of steel
Note: Graphical representation only.
The online D-Beam Calculator Reference Tool v2.0 is intended for use
only with assemblies identical to S1 and S3 in Girder-Slab Design Guide v2.0.
D-Beam® Profile
in
in
in
4
in
in
4
in
4
in
3
in
3
in
3
Load Resisted by
Each Cross Secti on
3.44
---
6.37
224
---
---
65.1
---
35.1
Noncomposite
Dead Load
5.20
3.61
4.61
443
347
395
66.6
95.9
75.1
Composite
Dead Load, Parti ti on Load,
Live Load
Noncomposite
(D-Beam® Alone)
Full Composite
C

bot D-Beam
C

top slab
C

top D-Beam
I

g
I

cr
I

eff
S

bot D-Beam
S

top slab
S

top D-Beam
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Project Name / Job #
Note: All figures generated on this page use a 1 inch grid.
Note: This spreadsheet is intended for use only with assemblies identical to S2 and S3 in the Design Guide.
www.girder‐slab.com
Copyright 2013 Girder‐Slab Technologies LLC
The composite cross sections above must be transformed into a single material (steel) for analysis based on the ratio of elastic moduli for 
each material.  To accomplish this, each subarea made of a material other than steel is replaced with a steel area of identical thickness but 
modified  width.  For the material properties given:
 
 
 
 
Notice of Disclaimer                                                                                                                                                                                                                     
This complimentary D‐Beam Calculator is a reference tool only and should only be used by a Registered Professional Engineer for determining 
whether the Girder‐Slab System is appropriate for a particular project. This program is solely for the purpose of convenience in quick selection 
and NOT to be used for final design.  Girder‐Slab Technologies LLC makes no representations to the validity, accuracy or correctness of the 
data represented in this calculator.  The user takes all responsibility for any and all calculations associated with the final design.
7.2 in of concrete slab = 1 in of steel
8 in of grout = 1 in of steel
8 in of concrete topping = 1 in of steel
If there is no topping, Composite Untopped and Full Composite section properties will be the same and may be used 
interchangeably.
Noncomposite Section
Neutral Axis
Steel
Full Composite Gross Section
Neutral Axis
Slab
Grout
Steel
Full Composite Cracked Section
Neutral Axis
Slab
Grout
Steel
D‐Beam® Profile
Section Properties From Sample Calculation
GIRDER SLAB
COMPOSITE STEEL AND PRECAST SYSTEM
COMPOSITE STEEL AND PRECAST SYSTEM
®
GIRDER SLAB
®
REVERSE
POSITIVE
FONTS: ITC LUBALIN GRAPH DEMI & HELVETICA BOLD
COLORS: PMS 146 & BLACK
American Institute of Steel Construction
Special Achievement Award
“For the development and production of the Girder-Slab
®
System
and its positive impact on the steel construction industry.”
Photo Courtesy of Supreme Steel
1. The open web Dissymmetric Beam shall be fabricated from
(ASTM A992/A572 Grade 50) standard steel wide fl ange
sections with fl at bar at top-fl ange and shall meet AISC
standards (except for depth, tolerance ± 1/8"), unpainted
unless specifi ed. The open web Dissymmetric Beam can be
specifi ed to include camber. Cambering can be built in
during assembly of the girder.
2. If the structural engineer of record determines that shoring
of the pre-composite assembly is needed, leave in place until
grout attains required strength.
3. Precast prestressed concrete hollow core slab units (min.
5,000 PSI) shall be in 4 or 8 foot widths and shall meet PCI
standards and tolerances, 2" min. bearing unless specifi ed
otherwise.
4. Reinforcing steel (ASTM A615 Grade 60) shall be placed
through the Dissymmetric Beam web openings and into
slab cores.
5. Cementitious grout (min. 4,000 PSI) shall be placed
monolithically around and through the Dissymmetric Beam
web openings and into slab cores. When concrete topping is
used, attain specifi ed strength of grout prior to placement.
6. The Girder-Slab System shall be constructed in accordance
with Underwriters Laboratories Inc., Floor-Ceiling Assembly
Design No. K912 in order to meet fi re classifi cation
standards and ratings set forth by BOCA and ICC codes.
7. The Girder-Slab System and D-Beam Girders shall be
provided by steel fabricators authorized by Girder-Slab
Technologies LLC of NJ in conformance with its
Design-Guide & Distribution requirements.
Steel Fabricator/Distributor contact information:
1-888-478-1100 or www.girder-slab.com.
8. The supplier of the Girder-Slab System shall provide
to the Project Owner (or its representative) a Girder-Slab
Compliance Certifi cate for each project upon completion
of system assembly and construction.
9. Comply with all applicable provisions of the following
standards and codes:
• Girder-Slab Technologies LLC Design-Guide
• American Institute of Steel
Construction (AISC)
• American Welding Society (AWS)
• Precast Concrete Institute (PCI)
• American Concrete Institute (ACI)
• American Society of Testing and
Materials (ASTM)
• Underwriters Laboratories Inc. (UL)
- Fire Resistance
Directory UL K912 ULC J500
• Building Offi cials and Code Administrators
International Inc. (BOCA) - National Building Code
• International Code Council Inc. (ICC) - International
Building Code
• Other applicable codes and standards
11
Specifying the Girder-Slab
®
System Technology
The Girder-Slab System Design Guide v2.0 and technology is available for use by industry professionals.
Application and use of this information requires design by a registered professional structural engineer.
Structural Engineers are asked to add the following Girder-Slab
®
System Specifi cation Guide to the General Notes section of their
construction documents. The Specifi cation Guide and the following Typical System Structural and Architectural Details are available
in both CAD and PDF formats on the Design Team Resources page of the Girder-Slab website. www.girder-slab.com
The Girder-Slab
®
System and D-Beam
®
Girder are available from your customary steel fabricators. Fabrication, construction, and
assembly shall be in conformance with the Girder-Slab
®
System Design Guide v2.0 specifi cations and details.
Girder-Slab
®
System Specifi cation Guide
S1 S2
CAD DETAILS ARE AVAILABLE ONLINE
12
S4
typical section @ reinforced core
typical section @ non-reinforced core
typical section: reinforced core
with 2” concrete topping
typical section: 8”
g
irder-
s
lab
s
ystem
alternate slab bearing
typical section: 8”
g
irder-
s
lab system
bearing on wf spandrel
typical section: 8”
g
irder-
s
lab system
without wf spandrel beam
grout to attain
4000 psi prior
to topping
open top
flange @ 24”o/c
for inspection
precast slab
12”
min.

db
8
8”
#4 x 2’-0”
@ 24” o/c max
2” min.
brg. typ.
precast slab
8”
2” min.
brg. typ.

db
8

db
9 similar
12”
min.
8”
4”
min.
#4 x 24”

db
8
2” min.
brg.

n
ote:
db9 top flange will
be above the slab.
c.i.
p
. concrete topping
8”
2”
12”
min.
#4 x 2’-0”
@ 24” o/c max
2” min.
brg. typ.

db
9
precast
slab
(details s4, s5, s6, s7, s8, s9, s10 & s14 are similar for db9)
slab not shown
for clarity
precast slab
bottom of db
wf

eng
.
no
te:
review unbraced
length of beam

eng
.
no
te:
check web for
shear reinf.
8”
8”
special precast /
slab (typ.) welded
to db8
db
8
weld plates + anchors
a
section
refer to details
s1 or s2 for
information not shown
a

eng
.
no
te:
to be used when
no spandrel beam
and slab diaphragm
span
>

30’-0”.
bottom of
db8
special plank acting
as diaphragm chord
S5
S6
S3
Typical System Structural Details
13
S7 S8
S9
S10
S11
S12
typical section: 8” precast slab
upset longitudinal spandrel beam
typical section: 8” precast slab
end bearing on wf spandrel beam
typical section: 8” precast slab
end bearing on wf interior beam
typical section: 8” precast slab
at elevator door sill
typical section: 8” precast slab
longitudinal bearing on wf spandrel beam
precast slab support detail
weld plate
+ anchors
wf
note:
stabilize beams and
slabs until all grouting
and welding is complete.
weld plate + anchor
stiffener plate
grout solid
8”
1/2”
8”
precast slab
rebar
weld plate + anchor
note:
stabilize beams and
slabs until all grouting
and welding is complete.
grout solid
cont. angle
rebar
weld plate
8”
wf
wall constr.
precast slab
fill core @
anchor plates
8”
weld plate + anchors
wf
8” precast
plank
hss
3/8” thick weld plate
+ anchors
l4x3x3/8 (llh)
Typical System Structural Details
14
Typical System Structural Details
S13 S14
S15
S17S16
typical section thru wf column
at grout pour stop
typical bearing clear of plank
examples of d-beam connections
to wf columns
typical elevation:
d
-beam connection
to wf “tree” column
typical plan / elevation: 8” d-
b
eam
connection to hss column
notch slab
@
c
ol.
db beyond
grout flow
packing to eliminate
tack
grout flow
packing to eliminate
1/8” plate
( conc. pour stop )
8”
wf column
gusset plate
hss
hss
precast slab
cap plate
see s16
wf column
db
pc. wf
hss
wt8
fb
seat to column
web or flange
end
p
l
shear
connection
per
aisc
4”
8”

no
te:
check website technical
bulletins faq on
connection design.
wt + fb
wf column
db
2” (min.)
(if less than 2” end
reinforcing reqd.)
d

no
te:
stabilize beams and slab
until all grouting and
welding is complete.
p
lan
v
iew
elevation
d
1/4
1/4
std. end plate
eng.
no
te:
- used at exposed cols.
w/
concealed conns.
- must note to stabilize
all d-
b
eams
- modify w/ bolts “outside”
of d-beam for normal conn.
t&b
typ.
typ.
typ.
A1
A3
REVIEW WEBSITE FAQ. CAD DETAILS ARE AVAILABLE.
CHECK WEBSITE CASE STUDIES FOR PROJECT SPECIFIC DESIGN EXAMPLES
15
db8
d-beam®
precast concrete
slab
grout
metal stud partition
gypsum board &
optional
8”
typical section:
g
irder-
s
lab
s
ystem
with rated drywall soffit enclosure
®
(1) layer
gypsum
board
(refer to
u.l. k912)
the partition and rated protection details are provided for illustration purposes
only and not intended for actual use.
g
irder-slab technologies, llc is not
responsible for design, means, or methods associated with this detail.
typical section:
g
irder-
s
lab
s
ystem
with rated drywall soffit enclosure
®
the partition and rated protection details are provided for illustration purposes
only and not intended for actual use.
g
irder-slab technologies, llc is not
responsible for design, means, or methods associated with this detail.
metal stud partition
gypsum board &
optional
optional
crown
molding
8”
grout
spray
fireproofing
(refer to
u.l. k912)
precast concrete
slab
db8
d-beam®
typical section:
g
irder-
s
lab
s
ystem
with drywall soffit / partition enclosure
®
(optional drywall partition)

details are similar for db9 with 2” concrete topping
the partition and rated protection details are provided for illustration purposes
only and not intended for actual use.
g
irder-slab technologies, llc is not
responsible for design, means, or methods associated with this detail.
(optional drywall partition)

details are similar for db9 with 2” concrete topping
(optional drywall partition)

details are similar for db9 with 2” concrete topping
db8
d-beam®
precast concrete
slab
grout
8”
piping &
mechanical
chase
11 1/4”
min.
precast concrete
slab
db8
d-beam®
grout
8”
structural,
piping, &
mechanical
chase
11 1/4”
min.
typical section:
g
irder-
s
lab
s
ystem
with drywall chase partition enclosure
®
(optional drywall partition)

details are similar for db9 with 2” concrete topping
the partition and rated protection details are provided for illustration purposes
only and not intended for actual use.
g
irder-slab technologies, llc is not
responsible for design, means, or methods associated with this detail.
Typical System Architectural Details
A2
A4
1. Steel Beam


Composite dissymmetric steel beam
fabricated from structural steel members in accordance
with the Specifi cation for the Design, Fabrication and Erec-
tion of Structural Steel for Buildings, published by the
American Institute of Steel Construction. The steel beam,
with an open web, has a 34.7 lb./ft. min. weight. The beam
consists of the bottom fl ange and partial web of a min.
W10(x)49 with a bar welded to the web that serves as
the top fl ange. Top bar min. dimensions of 1"x3", a min.
overall beam depth of 8" and a min. average cross-section
are of 10.2 in
2
.
2. Concrete Topping


(Optional for unrestrained
rating) — 3,000 PSI compressive strength, 150 (+ or -)
3 PCF unit weight. Normal weight concrete. Min. 1-1/8"
thickness required for 3 hr. Restrained Assembly Rating.
3. Precast Concrete Units*


Carbonate, siliceous
or lightweight aggregate. Min. 8" thick by 4' or 8' wide
units with cross section similar to that shown for Design
No. J952. Openings may be provided through the units for
piping, ducts or similar services and should be suitably
enclosed with constructions having at least equal
resistance, acceptable to authorities having jurisdiction.
Units have a min. 1-1/2" bearing on the bottom fl ange
of Item 1.
4. Grout


Sand-cement grout (3,500 PSI min.
compressive strength). Min. average thickness of 9/16"
above top bar. Hollow cores in precast concrete units
grouted 6" min. from beam web.
5. Runner Channel


Fabricated from 25 MSG galv.
steel, min. 1/2" deep, with 1" legs, fastened to steel beam
with XZF powder actuated pins spaced 12" OC.
6. Gypsum Board*


1/2" or 5/8" thick gypsum
board fastened to runner channels with 1" long, 0.150"
diameter steel screws spaced 16" OC.
7. Corner Bead


Fabricated from min. 28 MSG galv.
steel to form an angle with 1-1/4" legs. Legs perforated
with 1/4" diameter holes approximately 1" OC. Attached
to runner channel through gypsum board with 1" long,
0.150" diameter steel screws spaced 16" OC.
8. Joint Compound


(Not shown) 1/32" thick on
bottom and sides of wallboard from corner beads and
feathered out. Paper tape embedded in joint compound
over joints with edges of compound feathered out.
9. Spray-Applied Fire Resistive Material*


As an alternate to Item 5 through 8, the bottom fl ange
of the steel beam may be protected with a spray applied
fi re resistive material. Applied in one coat to a fi nal
untamped thickness of 3/8" to steel surfaces which are
free of dirt, oil or scale. Min. average untamped density
of 13 PCF with min. ind. untamped density of 11 PCF for
Types II and D-C/F. Min. average and min. ind. untamped
densities of 22 and 19 PCF, respectively, for Type HP. for
Type I, min. average density of 15 PCF with min. ind.
value of 12 PCF.
ISOLATEK INTERNATIONAL — Type D-C/F, HP, I or II,
Type EBS or Type X Adhesive/Sealer optional.
*Bearing the UL Classifi cation Mark.
Summarized from UL #K912. Please refer to the
current online Certifi cations Directory.
Fire Resistance Information
Fire Resistance Rating — ANSI/UL 263
Design No. K912
April 19, 2001
Restrained Assembly Ratings — 3 Hr.
Unrestrained Assembly Ratings — 2 Hr.
Unrestrained Beam Ratings — 2 Hr.
For Applications in Canada, see ULC J500.
Check current UL Directory for modifi cations or updates.
16
Precast Hollow Core Slab Openings
Prepared in the Factory
D-Beam Bottom Flange with Fire Resistive
Material
D-Beams in Fabrication
Connection Fit-Up
Views of Tree Connection, Seated Connection
& Temporary Tie Beam
17
Precast Hollow Core Slabs
Available in 4’ and 8’ Widths
D-BEAM
GIRDER
COLUMN
PRECAST SLAB
GROUT
Homewood Suites by Hilton - Philadelphia, PA
Aqua on the Ocean - Long Beach, NY
North Quad University of Michigan - Ann Arbor, MI
18
A Revolutionary Steel-Based Framing System
That Offers Low Floor-To-Floor Height
And Unobstructed Ceilings.
856.424.7880 Tel • 856.424.6880 Fax • 888.478.1100 Toll Free • www.girder-slab.com
COPYRIGHT 2002-2013 GIRDER-SLAB TECHNOLOGIES, LLC
GIRDER - SLAB TECHNOLOGIES,

LLC
GIRDER SLAB
COMPOSITE STEEL AND PRECAST SYSTEM
COMPOSITE STEEL AND PRECAST SYSTEM
®
GIRDER SLAB
®
REVERSE
POSITIVE
FONTS: ITC LUBALIN GRAPH DEMI & HELVETICA BOLD
COLORS: PMS 146 & BLACK
COMPOSITE STEEL AND PRECAST SYSTEM
ASSOCIATE
For more examples of completed and under-construction projects, consult the web site at www.girder-slab.com.
Girder-Slab and D-Beam are trademarks of Girder-Slab Technologies LLC. The Girder-Slab System and D-Beam
Girder are protected under United States, Mexican and Canadian Patents.
330 Cooper Street
Rutgers University
Camden, NJ
“Structural engineers often are judged by the
“pounds per square foot” of steel on the project.
Averaging 1.5 psf for basic floor framing on
this project is extremely low, as is 7.4 psf overall.
But even with such good structural efficiency,
structural steel would not even have been
considered were it not for the low floor-to-floor
heights achievable with the Girder-Slab System.”
“Structural Steel: Flat Plate Construction”
Modern Steel Construction February 2012
Janis Vacca, P.E., and
Clifford Schwinger, P.E.
The Harman Group