Status of Z-Pinch Fusion

cypriotcamelΠολεοδομικά Έργα

29 Νοε 2013 (πριν από 3 χρόνια και 9 μήνες)

97 εμφανίσεις

Status of Z
-
Pinch Fusion




















Capsule compression Z
-
Pinch Power Plant Chamber Repetitive Driver

experiments on Z LTD Techno
log
y



Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE
-
AC04
-
94AL85000.


Fusion Power Associates Annual Meeting


and Symposium


Washington, DC


November 19
-
21, 2003

Craig Olson

Sandia National Laboratories

Albuquerque, NM 87185


The long
-
range goal of Z
-
Pinch IFE is to produce an
economically
-
attractive power plant using high
-
yield
z
-
pinch
-
driven targets (

3GJ⤠琠lowrep
-
r瑥(

0.1H稩

Z
-
Pinch IFE DEMO (ZP
-
3, the first study) used 12 chambers,
each with 3 GJ at 0.1 Hz, to produce 1000 MWe

Z
-
Pinch IFE DEMO

Z
-
Pinch ETF

(ETF Phase 2)





␱$

Z
-
Pinch IRE



$150M(TC)

+op/year

Z
-
Pinch IFE PoP



$10M/yer

Z
-
Pinch High Yield



Z
-
Pinch Ignition



High Yield Facility

(ETF Phase 1)




Laser

indirect
-
drive

Ignition

2038



2024



2018



2012





2008





2004




1999





FI



ZR





Z





NIF


Year
Single
-
shot
, NNSA/DP
Repetitive

for IFE, OFES/VOIFE

Z
-
Pinch IFE

target

design



$2M/yer

Z
-
inchIFE

trgetfb.,

powerplnt

technologies



$2M /year

Z
-
Pinch IFE

target

design



$5M/yer

Z
-
inchIFE

trgetfb.,

powerplnt

technologies



$5M /year

Z
-
Pinch IFE CE



$400k/yer

(SNL LDRD +)

Z
-
Pinch IFE Road Map

Z
-
Pinch IFE Matrix of Possibilities


(choose one from each category)

Driver pulsed power:
_________


Marx generator/ magnetic switching linear transformer driver


water line technology (RHEPP technology) (LTD technology)

Power feed:
____



triax coax

RTL:
____


Flibe/electrical coating Flibe immiscible material




(e. g., low activation ferritic
steel)

Target:

__



double
-
pinch dynamic hohlraum

fast ignition

Chamber:

_


dry
-
wall wetted
-
wall thick
-
liquid wall solid/voids




Z
-
Pinch Driver: ______________


Marx generator/ magnetic switching linear transformer driver


water line technology (RHEPP technology) (LTD technology)

RTL (Recyclable Transmission Line): _____




Flibe/electrical coating immiscible material




(e. g., low activation ferritic steel)

Target:

_



double
-
pinch dynamic hohlraum

fast ignition

Chamber: ____




dry
-
wall wetted
-
wall thick
-
liquid wall solid/voids


(e. g., Flibe foam)



Z
-
Pinch Driver

0
50
100
150
200
0
0.5
1
1.5
Power (TW)
Z

Time
(



xrys

縱.8MJ

Mrx


11.4MJ


w瑥r

vcuum

䕬ec瑲icl瑯x
-
ryenergy

Conversione晦fciency㸠15%

Pulsed
-
power provides compact, efficient
time compression and power amplification

0.001
0.01
0.1
1
10
1
10
Energy (MJ/cm)
Current (MA)
Z
-
pinches offer the promise of a cost
-
effective
energy
-
rich source of x
-
rays for IFE

Supermite

Proto II

Saturn

Z

E
k

3
L
p

0
4

I
0
2


ZR

ZR will be within a factor of 2
-
3 in current
(4
-
9 in energy) of a High Yield driver.

High Yield Facility

(1 MA)

(10 MA)

(


60MA)

(


90䵁)


RTL


(Recyclable Transmission Line)

Z
-
pinch power plant chamber uses an RTL (Recyclable Transmission

Line) to provide the standoff between the driver and the target











INSULATOR STACK

(connects to driver)

FLIBE

JETS



10
-
20 Torr

Inert Gas

RTL

Z
-
PINCH

TARGET

Yield and Rep
-
Rate: few GJ every 3
-
10 seconds per chamber (0.1 Hz
-

0.3 Hz)

Thick liquid wall chamber: only one opening (at top) for driver; nominal pressure (10
-
20 Torr)

RTL entrance hole is only 1% of the chamber surface area (for R = 5 m, r = 1 m)

Flibe absorbs neutron energy, breeds tritium, shields structural wall from neutrons

Eliminates problems of final optic, pointing and tracking N beams, high speed target injection

Requires development of RTL


RTL replacement requires only modest
acceleration for IFE

L = 0.5 a t
2
, or a ~ 1/t
2

Acceleration is 10
4

less than for

IFE target injection for ions or lasers

1
10
0.01
0.1
1
10
Length (m)
Time (s)
(~ 10 Hz)

(~ 0.1 Hz)

Status of RTL Research

RTL electrical turn
-
on
Saturn experiments at 10 MA

(2000)


tin, Al, stainless
-
steel all show negligible losses

RTL low
-
mass and
Saturn experiments at 10 MA

(2001)

electrical conductivity 20


m祬慲㬠㔰

Ⱐ㄰1

Ⱐ㈵2


s瑥el

††††††††††††††††††††††††
RTLm慳sc潵ld⁢e⁡潷⁡′g

††††††††††††††††††††††††
RTLm慳s


㔰朠g慳l潷⁲esis瑩ve潳ses

RTLs瑲uc瑵r慬††††††††C慬cul慴潮s
⸠.isc潮sin⤠†
㈰㈩

†††††††††††††††††††††††
full
-
sc慬e⁒TL(

㔰5k朩g
潦㈵ill⁳瑥el潫⁦潲



-
㈰2T潲r

RTLm慮uf慣瑵rin朠††††All潷ed⁒TLbud来琠is⁡⁦ew␠$潲″⁇J

†††††††††††††††††††††††
Flibec慳瑩n朠


␰⸷$/RT䰩

†††††††††††††††††††††††
ferri瑩cs瑥els瑡tpin朠



␱⸲$
-
㌮㤵3RT䰩

Curren琠tTLrese慲ch

†
s瑲uc瑵r慬⁩n瑥杲i瑹
†††††††††††††

†
shr慰nel⁦潲m慴潮

†
RTLm慮uf慣瑵rin术c潳琠††††††††††††

†
v慣uumc潮nec瑩潮s††††††††††††††††††††††††

†
慣瑩v慴潮/w慳瑥⁳瑲e慭慮慬祳is††††††††††††††††††

†
sh潣kdisrup瑩潮⁴漠luidw慬ls

†
f潡oFlibe


RTL FINITE ELEMENT MODEL constructed in ANSYS

to perform structural analysis

R = 50 cm

r = 5 cm

L = 200 cm

25 mil steel

disc 10 cm lip

Fusion Technology Institute

University of Wisconsin, Madison

RTL Structural

PRELIMINARY BUCKLING ANALYSIS of steel RTL

78 Torr


RTL buckles at


1.52 psi = 78 Torr


as shown



20 Torr


no effect


(safe operating point)

Fusion Technology Institute

University of Wisconsin, Madison

RTL Structural


Targets

Z
-
pinch
-
driven
-
hohlraums have similar topology to
laser
-
driven
-
hohlraums, but larger scale
-
size

Double ended hohlraum

Laser Source

Cones

NIF Scale

5.5 mm

10 mm

35 mm

Dynamic hohlraum

6 mm

The baseline DEH capsule yields 380 MJ with

an ignition margin similar to a NIF capsule

Peak drive temperature

In
-
flight aspect ratio

Implosion velocity

Convergence ratio

Total RT growth factor

Peak density

Total rr

Driver energy

Absorbed energy

Yield

Burnup fraction

223 eV

37

2.9 x 10
7

cm/s

36

420

750 g/cm
3

3.15 g/cm
2

16 MJ

1.12 MJ

380 MJ

31%

Capsule Performance Parameters


0.240 cm radius

0.259 cm radius

0.218 cm radius

DT gas

(0.3 mg/cm
3
)

solid DT

solid Be

J.H. Hammer, et al., Phys Plasmas

6, 2129

Summary


Double
-
ended hohlraum ICF status


Simulation codes and analytic modeling have been validated by measurements
of time
-
dependent z
-
pinch x
-
ray production, z
-
pinch hohlraum temperatures, and
capsule hohlraum temperatures


A reproducible, single power feed, double z
-
pinch radiation source with excellent
power balance has been developed for ICF capsule implosion studies


The Z
-
Beamlet Laser (ZBL) is routinely used as an x
-
ray backlighter at x
-
ray
energies up to 6.75 keV


Achieved capsule convergence ratios of 14
-
20


Capsule symmetry (P2 and P4) in double
-
pinch hohlraums on Z can be
systematically controlled with demonstrated time
-
integrated symmetry of ≤ 3%


Optimum hohlraums on Z should produce time
-
integrated radiation symmetry of
≤ 1% for 5 mm diameter capsules and absorbed energies of 25 kJ


P4 shimming shots are scheduled in collaboration with LLNL and LBL HIF
program

Double
-
Ended Hohlraum Concept Publications

0.0

2.0

4.0

6.0

8.0

10.0

0.4

0.6

0.8

1

1.2

Radius (mm)

Cuneo, Vesey, Porter et al., Phys. Plas.
8
, 2257 (2001)

Cuneo, Vesey, Hammer et al., Laser Particle Beams,
19
, 481 (2001)

Hohlraum energetics

Foam ball radiation symmetry

Double pinch performance

Hanson, Vesey, Cuneo et al., Phys. Plas.
9
, 2173 (2002)

Cuneo, Vesey, Porter
et al., Phys. Rev. Lett.
88
, 215004 (2002)


Symmetric capsule implosions

Symmetry control

Bennett, Cuneo, Vesey
et al., Phys. Rev. Lett.
89
, 245002 (2002)


Bennett, Vesey, Cuneo et al., Phys. Plasmas,
10
, 3717 (2003)

Vesey, Cuneo, Bennett
et al., Phys. Rev. Lett.
90
, 035005 (2003)


Vesey, Bennett, Cuneo et al., Phys. Plasmas
10
, 1854 (2003)

Diagnostics

Sinars, Cuneo, Bennett et al., Rev. Sci. Instrum.,
74
, 2202 (2003)

Sinars, Bennett, Wenger, et al., Appl. Opt.,
19
, 4059, (2003)


Stygar,
Ives, Fehl, Cuneo et al., accepted for publication in Phys. Rev. E

Cuneo, Chandler, Lebedev et al., in preparation for Phys. Plasmas

Waisman, Cuneo, Stygar et al., in preparation for Phys. Plasmas

Concept

Hammer, Tabak, Wilks, et. al., Phys. Plasmas,
6
, 2129(1999)

Pinch physics

The initial dynamic hohlraum high yield integrated
target design produces a 527 MJ yield at 54 MA

Peak drive temperature

In
-
flight aspect ratio

Implosion velocity

Convergence ratio

DT KE @ ignition

Peak density

Total rr

Driver energy

Absorbed energy

Yield

Burnup fraction

350 eV

48

3.3 x 10
7

cm/s

27

50%

444 g/cm
3

2.14 g/cm
2

12 MJ

2.3 MJ

527 MJ

34%

Capsule Performance Parameters


0.275 cm radius

0.249 cm radius

DT gas

(0.5 mg/cm
3
)

0.253 cm radius

solid DT

solid Be

Be+3% Cu

J.S. Lash et al.,
Inertial Fusion Sciences & Apps 99
, p583

0.225 cm radius

Summary


Dynamic Hohlraum ICF status


The primary radiation source is a thin radiating shock in the foam converter


Shock timing and capsule implosions in good agreement with rad
-
MHD
modeling


Demonstrated >200 eV x
-
ray drive temperatures in dynamic hohlraums on Z


Imploded thin shell surrogate capsules absorbing 20
-
40 kJ of thermal x
-
rays
(NIF
-
sized capsules)


Measured T
e
~1 keV, n
e
~1x10
23

from Ar K
-
shell spectra from imploded capsules


Measured 2.6
±
1.3x10
10

thermonuclear D
-
D neutrons from ICF capsules
absorbing >20 kJ


Symmetry measurements of capsule core x
-
rays made through ‘thin walled’
dynamic hohlraums (a/b~0.6, CR~6)


Capsule x
-
ray emission history (PCDs) in good agreement with simulations


Capsule implosion time reproducible to 160 ps

Dynamic Hohlraum Concept Publications


Concept


V.P Smirnoff,
et al.,

Plasma Phys. Controlled Fusion
33
, 1697, (1991)


M. K. Matzen, Phys. Plasmas
4
, 1519 (1997)


J.H. Brownell,
et al.,

Phys Plasmas

5
, 2071, (1998)



D.L. Peterson,
et al.,

Phys Plasma
6

(1999)


J.S. Lash,
et al.
,
Proceedings of Inertial Fusion Sci. App. 1999
, (Elsevier,
Paris 2000), Vol. I, p 583


Energetics


T. W. L. Sanford,
et al.,

Phys. Rev. Lett., 5511 (1999)


T.J. Nash,
et al,
Phys Plasmas
6
, 2023 (1999)


R.J. Leeper,
et al.,

Nucl. Fusion
39
, 1283 (1999)


J.J. MacFarlane,
et al.,

Rev. Sci. Instrum.
70
, No. 1, p.1, (1999)


S. A. Slutz,
et al.,

Phys. Plasmas
8
, 1673 (2001)


T. W. L. Sanford,
et al.,

Phys. Plasmas
9
, No. 8, p. 3573 (2002)


T.J. Nash,
et al.,

, Rev. Sci. Instrum.
74
, 2211 (2003)


ICF capsule implosions and neutron production


S. A. Slutz,
et al.,

Phys Plasmas
10
, No. 5, p. 1875 (2003)


J.E. Bailey,
et al.,

Physical Review Letters
89
, No. 095004 (2002) 56


J.E. Bailey,
et al.,



LANL preprint server, physics/0306039


ICF ignition scaling


T.A. Mehlhorn,
et al.,

Plasma Phys Controlled Fusion


to be published,
2003

Code calculations and analytic scaling predict

z
-
pinch driver requirements for IFE DEMO

Double
-
Pinch
Hohlraum

Dynamic Hohlraum

current /x
-
rays

E
abs
/ yield

2 x 62
-
68 MA

2 x (16
-
19) MJ

1.3


2.6 MJ

400


4000 MJ

54


95 MA

12
-
37 MJ

2.4


7.2 MJ

530


4400 MJ

J. Hammer, M. Tabak, R. Vesey, S. Slutz, J. De Groot

current /x
-
rays


E
abs
/ yield

Based on these results, an IFE target for DEMO will require:


double
-
pinch hohlraum

dynamic hohlraum


36 MJ of x
-
rays (2x66MA) 30 MJ of x
-
rays (86 MA)


3000 MJ yield 3000 MJ yield


(G = 83) (G = 100)


Chambers/Power Plant


Z-Pinch IFE and Heavy Ion IFE use thick liquid walls

Z-Pinches use simple waterfalls with a pressure requirement of 10-20
Torr
Major drivers: ______________________________________________

Laser Heavy ion Z-pinch

(
KrF, DPSSL) (
induction
linac) (
pulsed power)
GeV, kA MV, MA
Targets
:_____________________________________ _______________

Direct-
drive Indirect-drive Fast Igniter option
(
major driver + PW laser)
Chambers
:__________________________________________________
Dry-
wall Wetted-wall Thick-liquid wall Solid/voids
Thick liquid walls essentially alleviate the “first wall” problem,
and can lead to a faster development path

Steel RTL Remanufacture Process


Z
-
IFE
DEMO
produces 1000 MWe

ZP
-
3 (the first study) used 12
chambers, each with 3 GJ at 0.1 Hz

Z
-
Pinch power plant studies: G. Rochau, et al. : ZP
-
3


J. De Groot, et al.: Z
-
Pinch Fast Ignition Power Plant

DEMO parameters:


yield/pulse: 3 GJ


driver x
-
rays/pulse (86 MA) 30 MJ


energy recovery factor: 80%


thermal recovery/pulse: 2.4 GJ


time between pulses/chamber: 3 seconds


thermal power/unit 0.8 GWt


thermal conversion efficiency 45 %


electrical output/unit 0.36 GWe


number of units 3


total plant power output 1.0 GWe

Major cost elements:


LTD z
-
pinch drivers (3) $900 M


RTL factory $500 M


Target factory $350 M


Balance of Plant $900 M


Total Cost $2.65 G


Z
-
Pinch IFE near
-
term plans

Z
-
IFE PoP is a set of four experiments (shown here)

plus

IFE target studies
plus

IFE Power Plant studies

RTL experiments


issues: shape, inductance, mass, electrical/structural, manufacture, cost


power flow: limits, optimal configuration, convolute location


chamber/interface issues: vacuum/electrical, debris removal, shielding


RTL experiment test on Z

Repetitive driver
-

LTD (Linear Transformer Driver) experiment


1 MA, 1 MV, 100 ns, 0.1 Hz driver design/construction/testing


LTD is very compact (pioneered in Tomsk, Russia) no oil, no water


LTD technology is modular, scalable, easily rep
-
ratable


1 MA, 100 kV cell is being developed this year (SNL/Tomsk)

Shock mitigation scaled experiments


3 GJ yield is larger than conventional IFE yields of 0.4
-
0.7 GJ


coolant streams, or solids/voids, may be placed as close to target as desired


shock experiments with explosives and water hydraulic flows


validate code capabilities for modeling full driver scale yields

Full RTL cycle @ 0.1 Hz experiment


integrated experiment (LTD, RTLs, z
-
pinch loads, 0.1 Hz)


demonstrate RTL/z
-
pinch insertion, vacuum/electrical connections, firing of z
-
pinch,


removal of remnant, repeat of cycle


z
-
pinches have 5 kJ x
-
ray output per shot


$4M for Z
-
Pinch IFE for FY04 is in House
-
Senate Conference Agreement

Cost: $14M/year for 3
-
5 years, $5M for FY04 to start


HEDP with Z

High current pulsed power accelerators
drive many different load configurations

Z
-
pinch x
-
ray source

Hohlraum source

(Planckian)

K
-
shell source

(Non
-
Planckian)

• ICF


-

Ignition & high yield


-

Inertial Fusion Energy

• Weapon physics

• Shock physics

• Basic science

• Radiation effects

• Weapon effects

• IFE chamber materials

• Basic science


High Z

Low to mid Z

High Current

Magnetic pressure

• Isentropic







Compression



Experiments


(ICE)

• Flyer Plates

• Basic science

ICF/WP

IFE

ICE/Flyer Plates

RES

High Current


Lser