Parallel Kinematics

copygrouperΜηχανική

13 Νοε 2013 (πριν από 3 χρόνια και 8 μήνες)

221 εμφανίσεις

www.p i.ws
P R E C I S E
Parallel Kinematics
He x a p o d
s
y s t e ms wi t
H
6
do
F a nd
n
a no me t e r
r
e s o l ut i o n
f l
E
x
I
b l
E
R E
l
I A
b l
E
2
www.p i.ws
www.p i.ws
Hi gH- Preci si on Moti on control i n uP to si x Axes
Hexapods –
Parallel-Kinematics Positioning Systems
Compact positioning system with 6 degrees
of freedom
Hexapod platforms are used for precision
positioning and alignment of loads in all six
degrees of freedom, three linear axes, and
three rotational axes.
Hexapods have a parallel-kinematics struc-
ture, i.e., the work piece is actuated simul-
taneously by multiple actuators, rather than
taking a stacked approach. The parallel ar-
rangement of the actuators optimizes the
overall system stiffness and allows for a lar-
ge central aperture.
Precise positioning of loads from 2 kg to
2000 kg
Depending on their design, Hexapods can
position loads from several kg up to seve-
ral tons in any spatial orientation, in other
words independently of the mounting ori-
entation and with submicrometer precision.
Advantages over serial kinematics design
Hexapods can be designed considerably
more compact than serially stacked multi-
axis positioning systems and there are no
moving cables to increase the footprint.
Since only a single lightweight platform is
actuated the moving mass is significantly
smaller, too. This results in improved dyna-
mics with considerably faster response and
reduced step-and-settle times. Furthermore,
there are no cable management issues as
with serial-kinematics multi-axis positio-
ners. Here friction and torque caused by the
cables reduce the positioning accuracy and
repeatability.
This principle where the lowest axis not only
moves the mass of the payload but also the
mass all other positioning mechanics above
reduces the stiffness and dynamic perfor-
mance and results in the accumulation of
individual off-axis errors.
 Large central aperture
 Three linear axes, three
rotational axes
 Low moving mass, low
inertia
 Excellent dynamic beha-
vior, fast step-and-settle
 Small installation space
 High stiffness
 Freely definable pivot
point
 Minimized axis crosstalk
motion
 Very good repeatability
pi_120265_titel_6achsen.indd 1
16.05.12 16:05
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/29.0
3
P I
|
He x a
o ds
P
www.p i.ws
S e l e c t i o n o f t h e m e c h a n i c a l c o m p o n e n t s
A H e x a p o d i s m o r e t h a n t h e s u m o f i t s i n d i -
v i d u a l p a r t s. A l l c o m p o n e n t s h a v e t o b e c a -
r e f u l l y s e l e c t e d a n d d e s i g n e d w i t h t h e i d e a
o f m u l t i - a x i s m o t i o n i n m i n d. T h i s s t a r t s
w i t h t h e u s e o f b a c k l a s h - f r e e m e c h a n i c a l
p a r t s a n d t h e r m a l l y m a t c h e d m a t e r i a l s. T h e
j o i n t s a l s o p l a y a v e r y i m p o r t a n t p a r t b e -
c a u s e t h e r e a r e 1 2 o f t h e m a n d a l l a r e i n -
v o l v e d i n e v e r y m o v e t h e H e x a p o d m a k e s.
T h e p r e c i s i o n o f e v e r y s t r u t ( a c t u a t o r ) i t s e l f
i s i m p o r t a n t, t o o, h o w e v e r i t i s n o t e n o u g h
t o e q u i p t h e s e a c t u a t o r s w i t h h i g h - r e s o l u t i -
o n s e n s o r s a n d h o p e t h e H e x a p o d s y s t e m
a c c u r a c y w i l l b e i d e n t i c a l t o t h e s e n s o r r e s o -
l u t i o n. O n t h e c o n t r a r y, t h e r e a r e o t h e r m o r e
i m p o r t a n t f a c t o r s.
M o t o r s a n d d r i v e s
P I H e x a p o d s a r e b a s e d o n e l e c t r o m e c h a n i -
c a l o r p i e z o e l e c t r i c d r i v e s a n d d i f f e r s i g n i fi -
c a n t l y f r o m t h e h y d r a u l i c H e x a p o d s k n o w n
f r o m fl i g h t o r d r i v i n g s i m u l a t o r s. D e p e n -
d i n g o n t h e a p p l i c a t i o n, d i r e c t - d r i v e d e s i g n s
o r g e a r m o t o r s a r e u s e d, r o l l e r s c r e w s o r
b a l l s c r e w s, b r u s h l e s s m o t o r s a n d e v e n l i n e -
a r m o t o r s a r e e m p l o y e d. P I a l s o m a k e s n o n -
m a g n e t i c a n d E U V c o m p a t i b l e H e x a p o d s.
J o i n t s
A n u m b e r o f d i f f e r e n t j o i n t d e s i g n s i s a l s o
a v a i l a b l e t o o p t i m i z e t h e H e x a p o d s. I f h i g h
l o a d c a p a c i t y a n d o v e r a l l s t i f f n e s s a r e i m -
p o r t a n t u n i v e r s a l j o i n t s w i t h t w o o r t h o -
g o n a l l y a r r a n g e d a x e s, i.e. t w o d e g r e e s o f
f r e e d o m, a r e t h e p r e m i u m c h o i c e.
B a l l a n d s o c k e t j o i n t s o f f e r m o r e d e g r e e s o f
f r e e d o m i n a r e l a t i v e l y s i m p l e d e s i g n. H o w -
e v e r, t h e o v e r a l l s t i f f n e s s a n d p r e c i s i o n i n
c a s e o f e x t e r n a l l o a d s a n d t o r q u e c a n s u f f e r.
A c o m p e n s a t i n g p r e l o a d i s r e c o m m e n d e d
b u t r e q u i r e s d r i v e s w i t h h i g h o u t p u t f o r c e s
s u c h a s t h e N E X L I N E
®
p i e z o w a l k m o t o r s
s h o w n i n t h e fi g u r e h e r e.
I f t h e h i g h e s t p r e c i s i o n i s r e q u i r e d, fl e x u r e
j o i n t s a r e r e c o m m e n d e d. T h e y e x h i b i t n e i t -
h e r f r i c t i o n n o r b a c k l a s h a n d d o n o t r e q u i r e
l u b r i c a n t s. H o w e v e r, t h e y o n l y w o r k o v e r r e -
l a t i v e l y s m a l l t r a v e l r a n g e s.
T h e w o r k s p a c e
I n a d d i t i o n t o l i n e a r m o t i o n, t h e H e x a p o d
p l a t f o r m c a n c a r r y o u t a n y c o m b i n a t i o n o f
t i l t i n g a n d r o t a t i o n a r o u n d a f r e e l y s e l e c t a b -
l e p i v o t p o i n t. D u e t o t h e p a r a l l e l k i n e m a t i c s
d e s i g n, t h e w o r k s p a c e i s a l s o n o t l i m i t e d b y
c a b l e s m o v e m e n t a n d c a b l e m a n a g e m e n t
s y s t e m s.
U n i v e r s a l j o i n t s o f t h e H - 8 4 0 H e x a p o d
m o d e l
I f t h e s t i f f n e s s r e q u i r e m e n t s o f t h e t o t a l
s y s t e m a r e l o w e r, a 3 - s t r u t d e s i g n c a n
a l s o b e u s e d i n w h i c h a d d i t i o n a l d e g r e e s
o f f r e e d o m a r e p r o d u c e d b e c a u s e a
p a s s i v e s t r u t c a n b e m o v e d i n t w o o r
m o r e a x e s. E x a m p l e: I n t h e S p a c e F A B
t h e i n d i v i d u a l s t r u t s a r e d r i v e n b y o n e
X Y t r a n s l a t i o n s t a g e e a c h
( fi g u r e: P I m i C o s G m b H )
B a l l a n d s o c k e t j o i n t s
T h e Z - a x i s p o s i t i o n i n g a c c u r a c y o f a n H - 8 2 4 H e x a p o d o v e r 2 5 m m f u l l t r a v e l i s i n t h e r a n g e o f a f e w m i c r o -
m e t e r s o n l y, w i t h t h e r e p e a t a b i l i t y w e l l b e l o w ± 0.1 µ m
4
www.p i.ws
www.P i.ws
H e x a p o d s w i t h p a s s i v e s t r u t s
I I n s t e a d o f v a r i a b l e, a c t i v e s t r u t s, H e x a p o -
d s c a n b e d e s i g n e d w i t h p a s s i v e s t r u t s t h a t
s h o w c o n s t a n t s t r u t l e n g t h. I n t h i s c a s e t h e
c o u p l i n g p o i n t s o r j o i n t s a r e u s u a l l y m o v e d
a l o n g a l i n e a r p a t h. T h i s d e s i g n i s a d v a n t a -
g e o u s w h e n t h e d r i v e u n i t i s t o b e s e p a r a t e d
f r o m t h e p l a t f o r m, e.g., o u t s i d e o f v a c u u m
c h a m b e r s.
A d v a n c e d m o t i o n c o n t r o l
T h e i n d i v i d u a l d r i v e s o f a H e x a p o d d o n o t
n e c e s s a r i l y p o i n t i n t h e d i r e c t i o n o f m o t i o n,
w h i c h i s w h y a p o w e r f u l c o n t r o l l e r t h a t c a n
h a n d l e t h e r e q u i r e d c o o r d i n a t e t r a n s f o r m a -
t i o n s i n r e a l t i m e i s n e e d e d.
P I u s e s a d v a n c e d d i g i t a l c o n t r o l l e r s a l o n g
w i t h u s e r - f r i e n d l y s o f t w a r e. A l l m o t i o n
c o m m a n d s a r e s p e c i fi e d i n C a r t e s i a n c o o r -
d i n a t e s, a n d a l l t r a n s f o r m a t i o n s t o t h e i n d i -
v i d u a l a c t u a t o r s t a k e p l a c e i n s i d e t h e c o n -
t r o l l e r.
A n i m p o r t a n t H e x a p o d p r o p e r t y i s t h e f r e e -
l y d e fi n a b l e p i v o t p o i n t. T h e p o s s i b i l i t y t o
r o t a t e a r o u n d a n y p o i n t i n s p a c e o p e n s u p
n e w a p p l i c a t i o n s f r o m fi b e r a l i g n m e n t t o
a s t r o n o m y.
T h e e n t i r e t y o f a l l c o m b i n a t i o n s o f t r a n s l a t i o n s a n d r o t a t i o n s t h a t a H e x a p o d c a n a p p r o a c h f r o m a n y g i v e n
p o s i t i o n i s c a l l e d t h e w o r k s p a c e; i t i s g i v e n i n r e f e r e n c e t o t h e o r i g i n o f t h e c o o r d i n a t e s y s t e m u s e d. T h e
w o r k s p a c e c a n b e l i m i t e d b y e x t e r n a l f a c t o r s s u c h a s o b s t a c l e s o r t h e p o s i t i o n a n d s i z e o f t h e l o a d
C o n s t a n t s t r u t - l e n g t h H e x a p o d d e s i g n. T h e d r i v e u n i t s m o v e t h e j o i n t p o s i t i o n u p a n d d o w n a f f e c t i n g t h e l i n e a r a n d
r o t a r y p o s i t i o n o f t h e p l a t f o r m
5
P I
|
He x a
o ds
P
Product Overview
p
arallel- ki nemati c systems, Hexapods, controllers, so
F
tware
n


Travel ranges to
34 mm / 42°
n


Especially compact
n


Vacuum-compatible
version to 10
-6
hPa
page 14H-811
6-Axis Miniature Hexapod
Fast, compact and highly precise
n


Travel ranges to
100 mm / 60°
n


Vacuum-compatible
version to 10
-6
hPa
n
For high loads
page 8H-850
6-Axis Hexapod
For loads of up to 250 kg
n


Travel ranges to
100 mm / 60°
n


Cost-effective
page 10H-840
6-Axis Hexapod
High velocity, medium load, affordable
n


Travel ranges to
45 mm / 25°
n


Vacuum-compatible
version to 10
-6
hPa
n


Cost-effective
page 12H-824
6-Axis Hexapod
Low-profile, precision
parallel-kinematic system
n


Bidirectional
repeatability 0.3 µm
n


Min. incremental
motion 0.1 µm / 2 µrad
page 16H-206
6-Axis Precision Alignment System
Ideal for fiber alignment
n


Travel ranges to
40 mm / 60°
n


Especially compact
page 20H-810
6-Axis Miniature Hexapod
High precision in a small package
n


Travel ranges to
100 mm / 10°
n


Vacuum-compatible
version to 10
-9
hPa
page 18SF-3000 BS
PI miCos SpaceFAB
6-Axis positioning system
6
www.p i.ws
n


Travel ranges to
400

mm / 40°
n


For high loads
n


Travel ranges to
100

mm / 6°
n


For high loads
n


Clear aperture
Ø 420 mm
n


Long lifetime:
2 million cycles
n


Travel range 400
µ
m
coarse, 40
µ
m fine
n


Closed-loop resolution
to 2 nm
n


Travel ranges
10 mm, 6°
n


Non-magnetic
n


Nanometer-resolution
page 21
page 22
page 22
page 23
page 23
n


Vacuum-compatible
version to 10
-6
hPa
n
For high loads
n


Repeatability to 2
µ
m
page 21M-850KHLH
Vacuum-Compatible High-Load
Hexapod
Precise positioning of loads of
up to 1 ton
M-850KHTH
1000 kg High-Load Hexapod
6 axes, large travel range, accuracy
in the micrometer range
M-850KPAH
6-Axis Positioner
Low-profile precision positioning system
for large surface loads to 200 kg
M-850KWAH
Weather-Resistant Hexapod
for Astronomy
Precision 6-axis positioner for
outdoor applications
N-510KHFS
High-Stiffness Nanopositioning
Z Stage with NEXLINE
®
Piezomotors
High-precision vertical positioning,
with capacitive feedback
N-515KNPH
Non-Magnetic Piezo Hexapod
6-axis precision positioning system
with NEXLINE
®
piezo stepping drives
n


Travel ranges to
1.5 mm / 2°
n


Non-magnetic
n


Vacuum-compatible
version to 10
-6
hPa
n


Especially compact
page 20P-911KNMV

UHV-Compatible Miniature
Piezo Hexapod
High-precision positioning even in
strong magnetic fields
7
P I
|
He x a
o ds
P
n


Optional control of
additional motion axes
n


Extensive software
support
n


Rapid start-up
n


Universal command set
n


Dedicated Hexapod
software
n


Works under
extreme environmental
conditions
n


Digital motion control-
ler for Hexapods with
piezo stepping drives
n


Optional control of
additional motion axes
n


Control designs
n


Handling systems,
tool inspection, medical
technology, space
telescopes, …
n


Manual control unit
n


Fiber nanopositioning
system
n


Extension cable set
page 26
page 28
page 32
page 32
page 33
page 35
n


Scalable travel ranges
n


For high loads
page 24H-845

Modular, Scalable Hexapod Concept
Faster custom designs for extreme
loads
C-887
Controller for Hexapod Positioning
Systems
6-D vector motion control,
comprehensive functionality
Software from PI
Effective and comfortable solutions
C-843KALM
Hexapod Controller for Use at High
Altitudes
Signal transmission over long
distances
E-712KNHC
High-End Digital Motion Controller
For multiaxis systems with piezo step-
ping drives and complex control
loops

Application Examples

Accessories
For Hexapod systems
www.p i.ws
EffEcti vE and comfortablE Soluti onS
Motion Control Software from PI
All digital controllers made by PI are accom-
panied by a comprehensive software packa-
ge. PI supports users as well as program-
mers with detailed online help and manuals
which ease initiation of the inexperienced
but still answer the detailed questions of the
professional. Updated software and drivers
are always available to PI customers free of
charge via the Internet.
PI software covers all aspects of the appli-
cation* from the easy start-up to convenient
system operation via a graphical interface
and quick and comprehensive integration in
customer written application programs.
Universal command set simplifies
commissioning and programming
PI’s General Command Set (GCS) structure
is consistent for all controllers regardless of
their complexity and purpose. GCS with its
many preprogrammed functions accelera-
tes the orientation phase and the application
development process significantly while
reducing the chance of errors, because the
commands for all supported devices are
identical in syntax and function. Further
advantages are that different PI controllers
can be added and integrated more easily
and system upgrades can be introduced
with a minimum of programming effort.
Supported operating
systems
 Windows XP (SP3)
 Windows VISTA
 Windows 7 32/64 bit
 Linux 32/64 bit
Nanopositioning
S UB- NANOME T E R RE S OL UT I ON
Micropositioning
L ONG T RAV E L RANGE S
Parallel Kinematics
UP T O 6 DE GRE E S OF F RE E DOM
Drive Technology
DC, S T E P P E R, P I E Z O, MAGNE T I C
GCS
MOT I ON CONT ROL
Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/23.0
* Not every function is available for all controllers.
For details, please refer to the corresponding product
data sheets.
www.P i.ws
Application Examples
Patient positioning in radiotherapy
In modern medical technology, a Hexapod can help in radi-
ation treatment, for example: the Hexapod makes sure the
patient is brought into exactly the right position and orienta-
tion. This makes it possible to precisely direct the radiation
and mitigate the effect on surrounding tissue (figure: cour-
tesy of CIVCO Medical Solutions).
Positioning of telescope reflectors
In the ALMA project (Atacama desert, Chile), up to 64 an-
tennas are combined to form a virtual single giant radio
telescope. PI M-850k Hexapods are integrated to position
the secondary reflectors in the antennas. The M-850K me-
chanics and controllers, specially designed for operation in
hostile conditions, can position loads of up to 75 kg with
sub-micron resolution (figure: © ALMA: ESO/NAOJ/NRAO).
Laboratory technology
The M-850 PI Hexapod here aligns a UHV chamber for
crystallographic experiments with high-energy X-rays (figu-
re: Beamline I811, MAX-lab, Lund, Sweden / UHV chamber:
Dr. J. Alvarez, Universidad Autonoma de Madrid, Spain).
For HAndli ng systeMs, tool i nsPecti on, Medi cAl tecHnology, sPAce telescoPes, …
Notes on specifications for Hexapods, see p. 25
8
www.p i.ws
H e x a p o d S y S t e mS | www.p i.wS
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/22.0
6-Axis Hexapod
For LoadS oF up to 250 kg
H-850
 Load capacity to 250 kg
 Repeatability to ±0.2 µm
 Travel ranges to 100 mm / 60°
 Actuator resolution to 5 nm
 MTBF 20,000 h
Reference-class 6-axis positioning system
Parallel-kinematic design for six degrees of freedom
making it significantly more compact and stiff than
serial-kinematic systems, higher dynamic range, no
moved cables: Higher reliability, reduced friction.
Vacuum-compatible versions to 10
-6
hPa are available
Drive variants
H-850.H1x with DC gear motors for heavy loads
H-850.G1x with powerful DC motors for higher velocity.
Heavy-duty, ultra-high-resolution bearings for 24/7
applications
Powerful digital controller, open software architecture
User-defined, stable pivot point, software-selectable.
Positions commanded in Cartesian coordinates. Macro
programming. Open source LabVIEW driver set. Work
space simulation software. Virtual Hexapod machine
software. Optional: Collision avoidance software (external
obstacles).
H-850.xx1 includes C-887.11, 6D vector motion controller
plus 2 additional servo axes. Options:
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
H-850.xx2 includes C-887.21 compact 6D vector motion
controller
Fields of application
Research and industry, standard and vacuum environ-
ments. For astronomy, optics positioning, aviation and
aerospace
9
P I
|
He x a
o ds
P
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H e x a p o d S y S t e mS | www.p i.wS
H-850.H1x H-850.G1x Unit Tolerance
for higher loads and holding forces for higher velocity and precision
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z
X, Y, Z, θ
X
, θ
Y
, θ
Z

Motion and positioning
Travel range* X, Y ±50 ±50 mm
Travel range* Z ±25 ±25 mm
Travel range* θ
X
, θ
Y
±15 ±15 °
Travel range* θ
Z
±30 ±30 °
Single-actuator design resolution 0.005 0.05 µm
Min. incremental motion X, Y 1 1 µm typ.
Min. incremental motion Z 0.5 0.5 µm typ.
Min. incremental motion θ
X
, θ
Y
, θ
Z
5 5 µrad typ.
Backlash X, Y 4 5 µm typ.
Backlash Z 1 1.5 µm typ.
Backlash θ
X
, θ
Y
15 25 µrad typ.
Backlash θ
Z
30 45 µrad typ.
Repeatability X, Y ±1 ±0.5 µm typ.
Repeatability Z ±0.3 ±0.2 µm typ.
Repeatability θ
X
, θ
Y
±5 ±3 µrad typ.
Repeatability θ
Z
±9 ±6 µrad typ.
Max. velocity X, Y, Z 0.5 8 mm/s
Max. velocity θ
X
, θ
Y
, θ
Z
6 100 mrad/s
Typ. velocity X, Y, Z 0.3 5 mm/s
Typ. velocity θ
X
, θ
Y
, θ
Z
3 50 mrad/s
Mechanical properties
Stiffness X, Y 7 7 N/µm
Stiffness Z 100 100 N/µm
Load (base plate horizontal / any orientation) 250 / 50 50 / 20 kg max.
Holding force, de-energized 2000 / 500 250 / 85 N max.
(base plate horizontal / any orientation)
Motor type DC motor, gearhead DC motor, gearhead
Miscellaneous
Operating temperature range -10 to 50 -10 to 50 °C
Material Aluminum Aluminum
Mass 17 17 kg ±5%
Cable length 3 3 m ±10 mm
Vacuum versions to 10
-6
hPa are availab-
le under the following ordering number:
H-850.xV. Specifi cations for vacuum
versions can differ.
Technical data specifi ed at 20±3°C.
Ask about custom designs!
* The travel ranges of the individual
coordinates (X, Y, Z, θ
X
, θ
Y
, θ
Z
) are
interdependent. The data for each
axis in this table shows its maximum
travel, where all other axes are at their
zero positions. If the other linear or
rotational coordinates are not zero, the
available travel may be less.
H-850, dimensions in mm
10
www.p i.ws
H e x a p o d S y S t e mS | www.p i.wS
6-Axis Hexapod
Hi gH Veloci ty, medi um load, affordable
H-840
 Load capacity to 30 kg
 Travel ranges to 100 mm / 60°
 Actuator resolution to 16 nm
 Repeatability to ±0.4 µm
 MTBF 20,000 h
 Velocity to 50 mm/s
Precision-class 6-axis system
Parallel-kinematic design for six degrees of freedom
making it significantly more compact and stiff than serial-
kinematic systems, higher dynamic range, no moved
cables: Higher reliability, reduced friction
Drive variants
H-840.G1x with DC gear motors
H-840.D1x with powerful DC motors for higher velocity
Powerful digital controller, open software architecture
User-defined, stable pivot point, software-selectable.
Positions commanded in Cartesian coordinates. Macro
programming. Open source LabVIEW driver set. Work
space simulation software. Virtual Hexapod machine
software. Optional: Collision avoidance software (external
obstacles).
H-840.xx1 includes C-887.11, 6D vector motion controller
plus 2 additional servo axes. Options:
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
H-840.xx2 includes C-887.21 compact 6D vector motion
controller
Fields of application
Research and industry. For micromanipulation, laser and
optics alignment, biotechnology, tool control
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/22.0
11
P I
|
He x a
o ds
P
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H e x a p o d S y S t e mS | www.p i.wS
H-840.G1x H-840.D1x Unit Tolerance
for higher resolution and load for higher velocity
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z
X, Y, Z, θ
X
, θ
Y
, θ
Z

Motion and positioning
Travel range* X, Y ±50 ±50 mm
Travel range* Z ±25 ±25 mm
Travel range* θ
X
, θ
Y
±15 ±15 °
Travel range* θ
Z
±30 ±30 °
Single-actuator design resolution 0.017 0.5 µm
Min. incremental motion X, Y 1 3 µm typ.
Min. incremental motion Z 0.5 1 µm typ.
Min. incremental motion θ
X
, θ
Y
, θ
Z
5 5 µrad typ.
Backlash X, Y 7 7 µm typ.
Backlash Z 2 2 µm typ.
Backlash θ
X
, θ
Y
30 30 µrad typ.
Backlash θ
Z
60 60 µrad typ.
Repeatability X, Y ±0.5 ±0.5 µm typ.
Repeatability Z ±0.4 ±0.4 µm typ.
Repeatability θ
X
, θ
Y
±7 ±7 µrad typ.
Repeatability θ
Z
±12 ±12 µrad typ.
Max. velocity X, Y, Z 2.5 50 mm/s
Max. velocity θ
X
, θ
Y
, θ
Z
30 600 mrad/s
Typ. velocity X, Y, Z 2 30 mm/s
Typ. velocity θ
X
, θ
Y
, θ
Z
20 300 mrad/s
Mechanical properties
Load (base plate horizontal / any orientation) 30 / 10 10 / 3 kg max.
Holding force, de-energized 100 / 25 15 / 5 N max.
(base plate horizontal / any orientation)
Motor type DC motor, gearhead DC motor
Miscellaneous
Operating temperature range -10 to 50 -10 to 50 °C
Material Aluminum Aluminum
Mass 12 12 kg ±5%
Cable length 3 3 m ±10 mm
Technical data specifi ed at 20±3°C.
Ask about custom designs!
* The travel ranges of the individual coordinates (X, Y, Z, θ
X
, θ
Y
, θ
Z
) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are
at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.
H-840, dimensions in mm
12
www.p i.ws
H e x a p o d S y S t e mS | www.p i.wS
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/22.0
6-Axis Hexapod
Low- profi Le, preci Si on paraLLeL- Ki nemati c SyStem
H-824
 Load capacity to 10 kg,
self-locking version
 Travel ranges to 45 mm / 25°
 Actuator resolution to 7 nm
 Min. incremental motion
to 0.3 µm
 Repeatability to ±0.1 µm /
±2.5 µrad
 Velocity up to 25 mm/s
Precision-class 6-axis positioning system
Parallel-kinematic design for six degrees of freedom
making it significantly more compact and stiff than
serial-kinematic systems, higher dynamic range, no
moved cables: Higher reliability, reduced friction.
Vacuum-compatible versions to 10
-6
hPa are available
Low-profile due to folded drive design
H-824.G1x with DC gear motors
H-824.D1x with powerful DC motors for higher velocity
Powerful digital controller, open software architecture
User-defined, stable pivot point, software-selectable.
Positions commanded in Cartesian coordinates. Macro
programming. Open source LabVIEW driver set. Work
space simulation software. Virtual Hexapod machine
software. Optional: Collision avoidance software (external
obstacles).
H-824.xx1 includes C-887.11, 6D vector motion controller
plus 2 additional servo axes. Options:
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
H-824.xx2 includes C-887.21 compact 6D vector motion
controller
Fields of application
Research and industry, standard and vacuum
environments. For micromanipulation, laser and optics
alignment, biotechnology, tool control
13
P I
|
He x a
o ds
P
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H e x a p o d S y S t e mS | www.p i.wS
H-824.G1x H-824.D1x Unit Tolerance
for higher resolution and load for higher velocity
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z
X, Y, Z, θ
X
, θ
Y
, θ
Z

Motion and positioning

Travel range* X, Y ±22.5 ±22.5 mm
Travel range* Z ±12.5 ±12.5 mm
Travel range* θ
X
, θ
Y
±7.5 ±7.5 °
Travel range* θ
Z
±12.5 ±12.5 °
Single-actuator design resolution 0.007 0.5 µm
Min. incremental motion X, Y, Z 0.3 1 µm typ.
Min. incremental motion θ
X
, θ
Y
, θ
Z
3.5 12 µrad typ.
Backlash X, Y 3 3 µm typ.
Backlash Z 1 1 µm typ.
Backlash θ
X
, θ
Y
20 20 µrad typ.
Backlash θ
Z
25 25 µrad typ.
Repeatability X, Y ±0.5 ±0.5 µm typ.
Repeatability Z ±0.1 ±0.1 µm typ.
Repeatability θ
X
, θ
Y
±2 ±2 µrad typ.
Repeatability θ
Z
±2.5 ±2.5 µrad typ.
Max. velocity X, Y, Z 1 25 mm/s
Max. velocity θ
X
, θ
Y
, θ
Z
11 270 mrad/s
Typ. velocity X, Y, Z 0.5 10 mm/s
Typ. velocity θ
X
, θ
Y
, θ
Z
5.5 55 mrad/s
Mechanical properties
Stiffness X, Y 1.7 1.7 N/µm
Stiffness Z 7 7 N/µm
Load (base plate horizontal / any orientation) 10 / 5 5 / 2.5 kg max.
Holding force, de-energized 100 / 50 15 / 5 N max.
(base plate horizontal / any orientation)
Motor type DC motor, gearhead DC motor
Miscellaneous
Operating temperature range -10 to 50 -10 to 50 °C
Material Aluminum Aluminum
Mass 8 8 kg ±5%
Cable length 3 3 m ±10 mm
Vacuum versions to 10
-6
hPa are availab-
le under the following ordering number:
H-824.xVx. Specifi cations for vacuum
versions can differ.
Technical data specifi ed at 20±3°C.
Ask about custom designs!
* The travel ranges of the individual
coordinates (X, Y, Z, θ
X
, θ
Y
, θ
Z
) are
interdependent. The data for each
axis in this table shows its maximum
travel, where all other axes are at their
zero positions. If the other linear or
rotational coordinates are not zero, the
available travel may be less.
H-824, dimensions in mm
14
www.p i.ws
H e x a p o d S y S t e mS | www.p i.wS
6-Axis Miniature Hexapod
FaSt, CompaCt and Hi gHly preCi Se
H-811
 Smallest Hexapod with
vacuum option
 Travel ranges to 34 mm / 42°
 Load capacity to 5 kg
 Actuator resolution 40 nm
 Min. incremental motion
to 0.2 µm
 Repeatability to ±0.1 µm
 Includes integrated scan
algorithms for fiber optic
alignment
Reference-class 6-axis positioning system
Parallel-kinematic design for six degrees of freedom
making it significantly more compact and stiff than
serial-kinematic systems, higher dynamic range, no
moved cables: Higher reliability, reduced friction.
Vacuum-compatible version to 10
-6
hPa available
Direct drive with brushless DC motors (BLDC)
and long-life ball screws
High precision, velocity and lifetime
Powerful digital controller, open software architecture
User-defined, stable pivot point, software-selectable.
Positions commanded in Cartesian coordinates.
Macro programming. Open source LabVIEW driver
set. Work space simulation software. Virtual Hexapod
machine software. Optional: Collision avoidance
software (external obstacles).
H-811.xx1 includes C-887.11, 6D vector motion controller
plus 2 additional servo axes. Options:
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
H-811.xx2 includes C-887.21 compact 6D vector motion
controller
Fields of application
Research and industry, standard and vacuum
environments. For micromanipulation, laser and optics
alignment, biotechnology, tool control
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/22.0
15
P I
|
He x a
o ds
P
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H e x a p o d S y S t e mS | www.p i.wS
H-811.D1x Unit Tolerance
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z

Motion and positioning
Travel range* X, Y, Z ±17, ±16, ±6.5 mm
Travel range* θ
X
, θ
Y
, θ
Z
±10, ±10, ±21 °
Single-actuator design resolution 40 nm
Min. incremental motion X, Y 0.5 µm typ.
Min. incremental motion Z 0.2 µm typ.
Min. incremental motion θ
X
, θ
Y
, θ
Z
3.5 µrad typ.
Backlash X, Y 1 µm typ.
Backlash Z 0.2 µm typ.
Backlash θ
X
, θ
Y
10 µrad typ.
Backlash θ
Z
15 µrad typ.
Repeatability X, Y ±0.3 µm typ.
Repeatability Z ±0.1 µm typ.
Repeatability θ
X
, θ
Y
±4 µrad typ.
Repeatability θ
Z
±8 µrad typ.
Max. velocity X, Y, Z 10 mm/s
Max. velocity θ
X
, θ
Y
, θ
Z
250 mrad/s
Typ. velocity X, Y, Z 5 mm/s
Typ. velocity θ
X
, θ
Y
, θ
Z

120 mrad/s
Mechanical properties
Stiffness X, Y 0.2 N/µm
Stiffness Z 3.6 N/µm
Load (base plate horizontal / any orientation) 5 / 2.5 kg max.
Holding force, de-energized (base plate horizontal / any orientation) 15 / 2.5 N max.
Motor type Brushless DC motor
Miscellaneous
Operating temperature range 0 to 50 °C
Material Stainless steel, aluminum
Mass 2.2
kg ±5%
Cable length 2 m ±10 mm
Vacuum versions to 10
-6
hPa are available under the following ordering number: H-811.DVx. Specifi cations for vacuum versions can differ.
Technical data specifi ed at 20±3°C.
Ask about custom designs!
* The travel ranges of the individual coordinates (X, Y, Z, θ
X
, θ
Y
, θ
Z
) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes are
at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.
H-811, dimensions in mm
16
www.p i.ws
H e x a p o d S y S t e mS | www.p i.wS
6-Axis Precision Alignment System
i deal for fi ber ali gnment
H-206
 Flexure based for highest
precision
 Includes integrated scan
algorithms for fiber optic
alignment
 Actuator resolution 33 nm
 Bidirectional repeatability
0.3 µm / 6 µrad
 Min. incremental motion
0.1 µm / 2 µrad
 Velocity from 10 µm/s to
10 mm/s
Reference-class 6-axis positioning system
Parallel-kinematic design for six degrees of freedom
making it significantly more compact and stiff than
serial-kinematic systems, guidance errors of individual
axes do not add up. Higher dynamics, higher reliability.
Driven by DC motors
Powerful digital controller, open software architecture
User-defined, stable pivot point, software-selectable.
Positions commanded in Cartesian coordinates. Macro
programming. Open source LabVIEW driver set. Work
space simulation software. Virtual Hexapod machine
software. Optional: Collision avoidance software (external
obstacles).
H-206.F11 includes C-887.11, 6D vector motion controller
plus 2 additional servo axes. Options:
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
H-206.F12 includes C-887.21 compact 6D vector motion
controller
Fields of application
Research and industry. For fiber alignment,
micromanipulation systems, optical testing set-ups
The H-206 includes rapid automatic scan routines for fast multi-axis alignment.
The graphic shows 2D optical signal intensity of a fiber optic component.
Complete device scan ensures detection of the global peak and prevents locking
on to a local maximum
© Physik Instrumente (PI) GmbH & Co. KG 2012. Änderungen vorbehalten. Aktuelle Revision unter www.pi.ws. 12/05/24.0
17
P I
|
He x a
o ds
P
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H e x a p o d S y S t e mS | www.p i.wS
H-206.F1x Unit Tolerance
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z

Motion and positioning
Travel range* X -8 to 5.7 mm
Travel range* Y ±5.7 mm
Travel range* Z ±6.7 mm
Travel range* θ
X
±5.7 °
Travel range* θ
Y
±6.6 °
Travel range* θ
Z
±5.5 °
Single-actuator design resolution 33 nm
Min. incremental motion X, Y, Z 0.1 µm typ.
Min. incremental motion θ
X
, θ
Y
, θ
Z
2 µrad (0.4“) typ.
Bidirectional repeatability X, Y, Z 0.3 µm typ.
Bidirectional repeatability θ
X
, θ
Y
, θ
Z
6 µrad typ.
Max. velocity X, Y, Z 10 mm/s
Load (baseplate horizontal) 1.5 kg max.
Miscellaneous
Operating temperature range 5 to 35 °C
Material Aluminum
Mass 5.8 kg ±5%
Cable length 3 m ±10 mm
Technical data specifi ed at 20±3°C.
Ask about custom designs!
* The travel ranges of the individual coordinates (X, Y, Z, θ
X
, θ
Y
, θ
Z
) are interdependent. The data for each axis in this table shows its maximum travel, where all other axes
are at their zero positions. If the other linear or rotational coordinates are not zero, the available travel may be less.
The H-206 Hexapod shows extremely good repeatability of minute
steps, in the above graph: 0.5 µm steps with a load of 1 kg in X
directionH-206.S, dimensions in mm
18
www.p i.ws
www.p i.ws
6- Axi s Posi ti oni ng system
PI miCos SpaceFAB
PI miCos reference-class 6-axis positioning
system
Parallel-kinematic design for six degrees of
freedom making it significantly more com-
pact and stiffer than serial-kinematic sys-
tems, higher dynamics. Vacuum-compatible
versions to 10
-6
hPa are available on request
Special controller and customer-friendly
software
Positions commands in Cartesian coordi-
nates. Simulation software calculates the
work space. Macro functionality
Fields of application
Industry and research, vacuum environ-
ments. For automated alignment of optical
components, automation, biomedicine and
biogenetics
 Low-profile, compact
system
 Linear travel ranges to
50 x 100 x 12.7 mm,
rotations to 10°
 Load capacity to 3 kg
 Vacuum versions
available
 Virtual pivot point
 User-friendly software,
controller, and amplifier
included
 Ask about custom
designs and complete
solutions!
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/25.0
SpaceFAB SF-3000 BS
Active axes X, Y, Z, θ
X
, θ
Y
, θ
Z
Motion and positioning
Travel range* X 50 mm
Travel range* Y 100 mm
Travel range* Z 12.7 mm
Travel range* θ
X
, θ
Y
, θ
Z
10°
Min. incremental motion X, Y, Z, unloaded 0.2 µm
Min. incremental motion θ
X
, θ
Y
, θ
Z
unloaded 0.0005°
Bidirectional repeatability X, Y, Z ± 0.5 µm
Bidirectional repeatability θ
X
, θ
Y
, θ
Z
20 µrad
Max. velocity X, Y, Z 30 mm/s
Typ. velocity X, Y, Z 10 µm/s to 10 mm/s
Max. velocity θ
X
, θ
Y
, θ
Z
10°/s
Mechanical properties
Max. load (baseplate horizontal) 3 kg
Miscellaneous
Material Stainless steel, aluminum black anodized
Mass 24 kg
* The travel ranges of the individual
coordinates ( X, Y, Z, θ
X
, θ
Y
, θ
Z
) are
interdependent. The data for each
axis in this table shows its maximum
travel, where all other axes are at their
zero positions. If the other linear or
rotational coordinates are not zero,
the available travel may be less.
Further data, see www.pimicos.com
19
P I
|
He x a
o ds
P
www.p i.ws
Customer-specific manufacturing
SpaceFAB 6-axis positioning systems can
be easily adapted to individual customer
requirements. Vacuum-compatible versions
as well as a scaling of the load capacity or
dimensions are possible.
What they all have in common is the control
with a highly developed digital controller.
The commands are comfortably given in
Cartesian coordinates, the pivot point for
rotary motions can be placed arbitrarily
by the customer. In „Contouring Mode“
trajectories can be predefined, and the
SpaceFAB can move along them.
A simulation program, the SpaceFAB
Simulator, shows possible travel ranges in
a specific application-related environment.
Application example: Automated sandwich
assembly in six degrees of freedom
A special challenge for the use of a Space-
Fab: A fully automated sandwich assembly
integrated in the production process for
assembly line production under vacuum
conditions with 10
-6
mbar.
A carrier is fitted with a precision foil and
a rear-side counter holder, thereby the 1 m
2

foil has to be positioned with an accuracy of
± 20 µm in relation to the carrier. Since the
position of the carrier varies, the assembly
process, which must not take longer than
10 seconds, can only be done with a posi-
tioning system with six degrees of freedom.
For the travels of 50 mm in the direction of
assembly and 20 mm perpendicular to it,
the SpaceFAB is ideal due to its low height.
The system developed for this application
can move loads of 100 kg with low vibra-
tion, fast, and very precisely. The key to this
is an ingenious combination of the mecha-
nical system, the spindle pitch, and a high
encoder resolution. This all-in-one solution
from PI miCos includes the software for
controlling the sandwich assembly, the
integration of the sensor measurements
as well as the cameras for monitoring the
gripper magnets.
Demonstration of a SpaceFAB in a vacuum chamber
20
www.p i.ws
H E X A P O D S Y S T E MS | WWW.P I.WS
UHV-Compatible Miniature Piezo Hexapod
HI GH- PRECI SI ON POSI TI ONI NG EVEN I N STRONG MAGNETI C FI ELDS
￿ Ultra-compact
￿ UHV-compatible to 10
-9
hPa
￿ Non-magnetic
￿ Ultra-high precision
fl exure joints
￿ Load capacity to 1.5 kg
￿ Travel ranges to 1.5 mm, to 2°
￿ With NEXLINE
®
piezo
stepping drives
Customized Travel ranges Max. load Sensor resolution Dimensions
solution
P-911KNMV X, Y, Z: 1.5 mm 1.5 kg 0.1 µm Øexternal: 100 mm
miniature θ
X
, θ
Y
, θ
Z
: 2° Height 90 mm
Hexapod
P-911K
The space-saving parallel-kinematic design allows for the low overall height
of less than 90 mm and a diameter of only 100 mm. NEXLINE
®
piezo stepping
motor drives and integrated incremental sensors ensure a position resolution
down to 0.1 µm in the linear axes
Appendix Micropositioning Nanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/25.0
6-Axis Miniature Hexapod
HI GH PRECI SI ON I N A SMALL PACKAGE
￿ Most compact standard Hexa-
pod in the PI portfolio
￿ Travel ranges to 40 mm / 60°
￿ Load capacity to 5 kg
￿ Actuator resolution 40 nm
￿ Min. incremental
motion to 0.5 µm
￿ Repeatability to ±0.1 µm
H-810
Despite its compact dimensions, the H-810 offers a large a travel range of up
to 40 mm. Brushless DC motors and ball screws provide for high precision
and long lifetime
Max. Travel Rotation Max. Dimensions
load ranges ranges velocity
H-810 5 kg X, Y: ±20 mm θ
X
, θ
Y
: ±10° 2.5 mm/s Ø external: 100 mm
miniature Z: ±6.5 mm θ
Z
: ±30° Height: 118 mm
Hexapod
21
P I
|
He x a
o ds
P
H E X A P O D S Y S T E MS | WWW.P I.WS
Vacuum-Compatible High-Load Hexapod
1000 kg High-Load Hexapod
PRECI SE POSI TI ONI NG OF LOADS OF UP TO 1 TON
6 AXES, LARGE TRAVEL RANGE, ACCURACY I N THE MI CROMETER RANGE
￿ Vacuum compatible to 10
-6
hPa
￿ Load capacity to 1000 kg
￿ Six Degrees of Freedom
￿ Six Degrees of Freedom
￿ Load capacity to 1000 kg in any
orientation
￿ Travel ranges to 400 mm / 40°
￿ Repeatability to 2 µm
￿ Drive: brushless motors with
brake
￿ Resolution to 0.8 µm / 0.5 µrad
￿ Sophisticated controller using
vector algorithms
Customized Travel ranges Rotation Max. Dimensions
solution ranges velocity
M-850KHLH X, Y, Z: ±12 mm θ
X
, θ
Y
: ±3° X, Y, Z: 0.5 mm/s Ø external: 1 m
Vacuum θ
Z
: ±4° Height: 0.5 m
Compatible High
Load Hexapod
M-850K
M-850K
Experiments on accelerator rings are often carried out under vacuum con-
ditions. This vacuum-compatible Hexapod is well-suited for high precision
positioning of loads of up to 1 ton (H-840 standard Hexapod (30 kg load) for
size comparison)
Brushless DC servo motors with brakes in this custom parallel-kinematic
Hexapod positioning system allow loads of up to one ton to be positioned in
any orientation with micrometer accuracy over ranges up to 400 mm
Customized Travel ranges Max. Max. Unidir. Dimensions
solution load velocity repeatability

M-850KHTH X, Y: ±200 mm 1000 kg 1 mm/s X, Y, Z: ±1 µm Base platform:
High-Load Z: ±100 mm θ
X
, θ
Y
, θ
Z
: ±3 µrad Ø 900 mm
Hexapod θ
X
, θ
Y
: ±20° Upper platform:
θ
Z
: ±5° Ø 800 mm
Height: 714 mm

Aperture:
Ø 500 mm
Appendix Micropositioning Nanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/19.0
22
www.p i.ws
H E X A P O D S Y S T E MS | WWW.P I.WS
6-Axis Positioner
Weather-Resistant Hexapod for Astronomy
LOW- PROFI LE PRECI SI ON POSI TI ONI NG SYSTEM FOR LARGE SURFACE LOADS TO 200 KG
PRECI SI ON 6- AXI S POSI TI ONER FOR OUTDOOR APPLI CATI ONS
￿ Six Degrees of Freedom
￿ Low-profi le design due to
parallel kinematics
￿ Encoder resolution 0.1 µm
￿ Repeatability 0.3 mm in
6-D space
￿ Integrated brakes and additional
safety switches
￿ Unidirectional repeatability 5 µm
￿ Load capacity to 75 kg
￿ Clear aperture Ø 420 mm
￿ Long lifetime: 2 million cycles
￿ No moving cables for improved
reliability, reduced friction
￿ High velocity to 16 mm/s
￿
Cartesian coordinate control with
virtualized pivot point
￿ Drive: brushless motors
￿ Corresponds to protection
class IP 64
￿ Corrosion protection
M-850K
M-850K
Hexapod design for precise orientation of large surface loads, e. g. of
inspection and assembly systems in LCD production or the positioning
of patients in medical engineering
The M-850KWAH custom Hexapod for astronomy applications is protected
by rubber boots and and suitable materials. The special mechanical design
as well as a non-standard controller make it particularly well-suited for
telescope applications in the highlands of Chile, where it is operated out-
doors at elevations up to 5,000 m above sea level
Customized solution Travel ranges Max. load Mass Dimensions
M-850KWAH X: ±10 mm 75 kg 46 kg Ø external: 580 mm
Weather-Resistant Y: ±11 mm Height: 357 mm
for Astronomy Z: ±16 mm
Customized Travel ranges Min. incremental Max. load
Mass Dimensions
solution motion
M-850KPAH X, Y: ±50 mm X, Y, Z: 0.1 mm Static: 800 kg 70 kg 1200 × 530 x
Positioning Z: ±25 mm θ
X
, θ
Y
, θ
Z
: 0.8 mrad Dynamic: 200 kg 184 mm
System θ
X
, θ
Y
, θ
Z
: ±3°
Appendix Micropositioning Nanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/25.0
23
P I
|
He x a
o ds
P
H E X A P O D S Y S T E MS | WWW.P I.WS
High-Stiffness Nanopositioning Z Stage
with NEXLINE
®
Piezomotors
Non-Magnetic Piezo Hexapod
HI GH- PRECI SI ON VERTI CAL POSI TI ONI NG, WI TH CAPACI TI VE FEEDBACK
6- AXI S PRECI SI ON POSI TI ONI NG SYSTEM WI TH NEXLI NE
®
PI EZO STEPPI NG DRI VES
￿ Closed-loop resolution to 2 nm
￿ Self-locking,
no heat generation at rest
￿ Hybrid piezo drive combines
high stiffness, long travel and
very fast response
￿ For high-energy physics and
medical applications
￿ Travel ranges 10 mm, 6°
￿ Nonmagnetic
￿ Load capacity to 50 kg
￿ Travel range 400 µm coarse,
40 µm fi ne
￿
Direct metrology: One single con-
trol loop with capacitive sensors
￿
Piezo stepping drive w/o wear and
tear and outstanding lifetime due
to PICMA
®
piezo actuators
￿ Nanometer resolution
￿ Low Profi le:
only 140 mm height
￿ Self-locking,
no heat generation at rest
N-510K
N-515K
The N-510KHFS Z-stage combines NEXLINE
®
piezo stepping drives with
PICMA
®
piezo actuators, and meets the strict requirements of inspection
tasks in the semiconductor industry. Both drive technologies are controlled
by a single control loop based on capacitive position feedback sensors
providing accuracy in the nanometer range. Tip / tilt versions available
This 6-axis parallel kinematics positioning system with NEXLINE
®
high-load
actuators was designed for use in strong magnetic fi elds such as are
encountered in the vicinity of beam control systems on accelerator rings or
in MRI scanners
Customized Travel ranges Max. load Dimensions
solution
N-515KNPH X, Y, Z: 10 mm 50 kg Ø Base plate, external: 380 mm
Non-Magnetic θ
X
, θ
Y
, θ
Z
: 6° Ø moving platform, top: 300 mm
Piezo Hexapod Height: 140 mm
Clear aperture: Ø 202 mm
Customized Travel Max. Bidir. Max. Dimensions
solution ranges velocity Repeatability load
N-510KHFS Coarse: 1 mm/s 50 nm 2.5 kg Ø external: 300 mm
Hybrid 400 µm (full travel) Height 68.5 mm
Focusing Fine: 40 µm
System
Appendix Micropositioning Nanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/25.0
24
www.p i.ws
AppendixMicropositioningNanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
H E X A P O D S Y S T E MS | WWW.P I.WS
Modular, Scalable Hexapod Concept
FASTER CUSTOM DESI GNS FOR EXTREME LOADS
￿ Scalable travel ranges
and angles
￿ Loads scalable to 400 kg
in any orientation,
horizontally to 1000 kg
￿ High precision, bidirec-
tional repeatability of
around 5 µm
￿ Velocity to 20 mm/s
￿ Brushless DC motors
with brakes
￿ Sophisticated controller
using vector algorithms,
virtual pivot point
￿ Extensive software
support
Precision positioning of heavy loads in six
degrees of freedom can be achieved with
a high degree of fl exibility by parallel-kine-
matic structures. The workpiece is actuated
simultaneously by multiple actuators, rather
than taking a stacked approach. The parallel
arrangement of the actuators optimizes the
total stiffness, dynamics and allows for a
large central aperture.
Custom high-load positioning systems of-
ten need to be completely integrated, i.e.,
the payload acts as the platform to which
the 6 actuators need to be attached.
Starting with six identical single struts, PI
has developed a concept for an adapted ki-
nematic system that meets a wide variety
of requirements. A set of different modules
for motors, drives, and joints supports the
design process and saves time as well as in-
vestment costs. The modular design allows
special requirements to be implemented
and integrated in the customer‘s application
much faster.
The aim is to react to customer requests as
quickly as possible and to adapt the positio-
ning system according to the individual task
at hand.
Powerful digital controller,
open software architecture
User-defi ned, stable pivot point, software-
selectable. Positions commanded in Cartesi-
an coordinates. Macro programming. Open
source LabVIEW driver set. Work space si-
mulation software. Optional: Control of two
additional motorized axes.
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/21.0
P I
|
He x a
o ds
P
25
Notes on Specifications for Hexapods
m
oti on and posi ti oni ng
Typ. velocity
Recommended value for continuous ope-
ration; also referred to as average or con-
tinuous velocity. This value depends on the
application.
Mechanical properties
Stiffness
Typical tolerance: ±20%
Max. load
Load limit, load at center of stage, positio-
ning system in closed-loop operation. Higher
loads will reduce the possible travel ranges
and may also reduce the lifetime. Data for
vacuum versions can differ.
Max. holding force
The maximum force of the Hexapod when
powered down, depending on the orienta-
tion of the base plate.
Miscellaneous
Operating temperature range
Safe operation, no damage to the drives.
All technical data specified in the data sheet
refer to room temperature (22°C ±3°C).
Material
Hexapods are made of anodized aluminum
or stainless steel. Small amounts of other
materials may be used (for bearings, pre-
load, coupling, mounting, etc.). For special
applications other materials such as invar
are possible.
Mass
Typical tolerance: ±5%
Cable length
Typical tolerance: ±10 mm
Travel range
The distance between two limit switches
defines the travel range of the individual
struts. The maximum travel ranges of the
motion axes are interdependent. The stated
values indicate the maximum travel of each
axis, where all other axes are at their zero
positions. If the other linear or rotational co-
ordinates are not zero, the available travel
may be less.
Design resolution
The theoretical minimum motion that can
be made, based on the selection of the me-
chanical drive components (spindle pitch,
gear ratio, angular motor resolution etc.).
Design resolution is usually better than
the practical position resolution (minimum
incremental motion). For linear encoders,
the design describes the resolution of the
position feedback sensor system.
Min. incremental motion
The minimum motion that can be repea-
tedly executed for a given input is called
minimum incremental motion. The values
stated are typical measured values.
Backlash
Position error that occurs upon reversing
direction due to error in the drivetrain. The
values stated are typical measured values.
Data for vacuum versions can differ.
Repeatability
Values stated are typical measured values
(RMS, 1 sigma) for unidirectional repea-
tability.
Max. velocity
This is the short-term peak value for ho-
rizontal mounting, with no load, and not
intended for continuous operation. Data
for vacuum versions can differ.
26
www.p i.ws
Controller for Hexapod Positioning Systems
6- D Vect or Mot i on cont rol, coMprehensi Ve Funct i onal i t y
c-887
 Sophisticated controller
using vector algorithms
 Freely programmable,
virtual pivot point
 Data recorder
 Macro program functionality

Stand-alone operation possible
and control through TCP/IP and
RS-232 interfaces
 Extensive software support
Digital controller for 6-axis-parallel kinematics
Included in the delivery of all PI standard Hexapod systems
 C-887.11, 19“ controller, comprises the control for two
additional single axes with servo motors, the functionality
can be enhanced with many additional options
 C-887.21 compact bench-top controller for a lower
system price
Extensive software support
Functions
Real-time system. Position control using Cartesian
coordinates, vectorized motion. Stable, virtual pivot point
can be defined freely in the working space. Data recorder
for recording operating parameters such as motor control,
velocity, position or position error. Macro command
language. Stand-alone operation possible with Autostart
macro or connection of keyboard and monitor. Optional:
Manual control unit
Custom designs
Custom designs are available for use at high altitudes,
e.g. for astronomical telescope applications. Processing
of absolute sensors. Control of motor brakes. Processing of
additional (redundant) position sensors for increased safety
requirements, e.g. in medical technology
h e x a p o D s y s t e Ms | www.p i.ws
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/22.0
Software
PIMikroMove user software. Common command
set for all PI positioning systems. Shared libraries
for Windows and Linux. Complete set of LabVIEW
VI’s. Graphical user interfaces, configuration software
and graphically displayed scan routine.
Optional: PIVeriMove software for checking a
restricted operating space
Interfaces
TCP/IP Ethernet can also be used for remote control
and service, RS-232. Monitor, mouse and keyboard
interface. On request: RS-422 for up to 1.4 km cable
length
Possible enhancements for C-887.11
 Analog interfaces/photometer cards for visible light
(F-206.VVU) or the infrared light range (F-206.iiU)
 F-206.NCU fast piezo nano-alignment system for
alignment with nanometer precision
27
P I
|
He x a
o ds
P
h e x a p o D s y s t e Ms | www.p i.ws
Micropositioning
Hexapods Parallel
Kinematics
C-887.11 C-887.21
Function 6-D controller for Hexapods, 19“, 6-D controller for Hexapods,
incl. control of two additional single axes, compact bench-top for a lower system price
can be enhanced with many options
Drive type Servo motors (Hexapod and additional axes) Servo motors
Optional: Piezo drives
Motion and control
Servo characteristics 32-bit PID filter
Trajectory profile modes Trapezoid, linear interpolation
Processor CPU: 1.8 GHz, motion control chip with 2.5 kHz servo update rate
Encoder input AB (quadrature) differential TTL signal, 5 MHz
Stall detection Servo off, triggered by position error
Reference point switch TTL signal
Electrical properties
Max. output power per channel 10-bit output for PWM drivers, 24 kHz
Max. output voltage per channel TTL in PWM operation for SIGN and MAGN
Interface and operation
Communication interfaces TCP/IP, RS-232
VGA (monitor), USB (keyboard, mouse, manual control unit)
Hexapod connection MDR, 68-pin for data transmission
M12 4-pin. for power supply
Connection for additional single axes 15-pin sub-D –
I/O ports Optional: Analog inputs (photometer cards) –
Command set PI General Command Set (GCS)
User software PIMikroMove
Software drivers LabVIEW driver, shared libraries for Windows and Linux
Manual control Optional: C-887.MC control unit for Hexapods
Miscellaneous
Operating voltage 100 to 240 VAC, 50 / 60 Hz
Operating temperature range 5 to 40°C
Mass 11 kg 5 kg
Dimensions 395 × 483 × 185 mm 255 × 226 × 185 mm
All PI Hexapod systems are delivered with an extensive software package.
Included are simulation programs that calculate the working space of the
Hexapod and the individual loads on each actuator depending on the Hexapod
orientation in space
Highly advanced digital controllers are also available for
Hexapods with piezo stepping drives which are suitable for
operation in strong magnetic fi elds or UHV environments
Appendix Nanometrology
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
28
www.p i.ws
www.p i.ws
EffEcti vE and comfortablE Soluti onS
Motion Control Software from PI
All digital controllers made by PI are accom-
panied by a comprehensive software packa-
ge. PI supports users as well as program-
mers with detailed online help and manuals
which ease initiation of the inexperienced
but still answer the detailed questions of the
professional. Updated software and drivers
are always available to PI customers free of
charge via the Internet.
PI software covers all aspects of the appli-
cation* from the easy start-up to convenient
system operation via a graphical interface
and quick and comprehensive integration in
customer written application programs.
Universal command set simplifies
commissioning and programming
PI’s General Command Set (GCS) structure
is consistent for all controllers regardless of
their complexity and purpose. GCS with its
many preprogrammed functions accelera-
tes the orientation phase and the application
development process significantly while
reducing the chance of errors, because the
commands for all supported devices are
identical in syntax and function. Further

advantages are that different PI controllers
can be added and integrated more easily
and system upgrades can be introduced
with a minimum of programming effort.
Supported operating
systems
 Windows XP (SP3)
 Windows VISTA
 Windows 7 32/64 bit
 Linux 32/64 bit
Nanopositioning
S UB- NANOME T E R RE S OL UT I ON
Micropositioning
L ONG T RAV E L RANGE S
Parallel Kinematics
UP T O 6 DE GRE E S OF F RE E DOM
Drive Technology
DC, S T E P P E R, P I E Z O, MAGNE T I C
GCS
MOT I ON CONT ROL
Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/05/23.0
* Not every function is available for all controllers.
For details, please refer to the corresponding product
data sheets.
P I
|
He x a
o ds
P
www.p i.ws
P I M i k r o M o v e s o f t w a r e e n s u r e s r a p i d
s t a r t - u p
P I M i k r o M o v e i s P I ’ s c o n v e n i e n t g r a p h i -
c a l u s e r i n t e r f a c e f o r a n y t y p e o f d i g i t a l
c o n t r o l l e r a n d p o s i t i o n i n g s y s t e m, r e g a r d -
l e s s o f w h e t h e r p i e z o e l e c t r i c, l i n e a r m o t o r s,
o r c l a s s i c a l e l e c t r i c a l m o t o r d r i v e s a r e u s e d
a n d i n d e p e n d e n t o f t h e c o n fi g u r a t i o n a n d
n u m b e r o f a x e s.
A l l c o n n e c t e d c o n t r o l l e r s a n d a x e s a r e
d i s p l a y e d a n d c o n t r o l l e d c o n s i s t e n t l y w i t h
t h e s a m e g r a p h i c a l i n t e r f a c e. T w o o r m o r e
i n d e p e n d e n t a x e s c a n b e c o n t r o l l e d b y t h e
p o s i t i o n p a d u s i n g a m o u s e o r j o y s t i c k;
H e x a p o d s i x - a x i s p o s i t i o n i n g s y s t e m s a r e
a l s o d i s p l a y e d g r a p h i c a l l y.
M a c r o p r o g r a m s s i m p l i f y r e p e t i t i v e t a s k s f o r
e x a m p l e i n a u t o m a t e d p r o c e s s e s. T h e m a c -
r o s a r e c r e a t e d a s G C S c o m m a n d s e t s t h a t
c a n b e e x e c u t e d d i r e c t l y o n t h e c o n t r o l l e r,
e.g., a s a s t a r t - u p m a c r o t h a t a l l o w s s t a n d -
a l o n e o p e r a t i o n; t h e y c a n a l s o b e p r o c e s s e d
b y t h e h o s t P C.
S c a n a n d a l i g n a l g o r i t h m s c a n r e c o r d a n a -
l o g v a l u e s, e.g., t h e o u t p u t o f a p o w e r m e t e r
a s a f u n c t i o n o f p o s i t i o n f o r l a t e r e v a l u a t i o n
w i t h e x t e r n a l s o f t w a r e. T h e y c a n a l s o a u t o -
m a t i c a l l y fi n d t h e g l o b a l m a x i m u m o f, f o r
e x a m p l e, t h e c o u p l i n g e f fi c i e n c y o f o p t i c a l
d e v i c e s.
D e p e n d i n g o n t h e s p e c i fi c c o n t r o l l e r,
P I M i k r o M o v e s u p p o r t s a n u m b e r o f a d d i t i -
o n a l f u n c t i o n s. A d a t a r e c o r d e r c a n r e c o r d
s y s t e m p a r a m e t e r s a n d o t h e r v a r i a b l e s
d u r i n g m o t i o n f o r l a t e r a n a l y s i s.
O p t i m i z i n g s y s t e m b e h a v i o r
Wh e n t h e m e c h a n i c a l p r o p e r t i e s o f a p o s i t i -
o n i n g s y s t e m a r e c h a n g e d, e.g., b y a p p l y i n g
a d i f f e r e n t l o a d, m o t i o n c o n t r o l p a r a m e t e r s
o f t e n n e e d t o b e a d a p t e d. P I s o f t w a r e p r o v i -
d e s t o o l s f o r o p t i m i z a t i o n o f t h e s y s t e m r e s -
p o n s e a n d s t a b i l i t y. D i f f e r e n t p a r a m e t e r s e t s
c a n b e s a v e d f o r l a t e r r e c a l l, a l s o a c c e s s i b l e
f r o m c u s t o m a p p l i c a t i o n p r o g r a m s.
30
www.p i.ws
www.p i.ws
rapi d i ntEgrati on of pi poSi ti oni ng SyStEmS and controllErS
Programming
In measuring and control technology and
automation engineering, many applications
are produced in LabVIEW. PI provides com-
plete LabVIEW drivers sets to facilitate pro-
gramming. A controller-specific Configurati-
on_Setup VI is integrated at the start of the
LabVIEW application and includes all system
information and initiation steps required for
start-up. The application itself is implemented
with controller-independent VIs. In case of
a controller change or upgrade, it is usually
only necessary to exchange the Configurati-
on_Setup VI , whereas the application-specific
code remains identical due to the consistent
GCS command set structure. The driver set
includes many specific exemplary programs,
e.g., comprehensive scan and align applica-
tions that can be used as template for own
programs. Moreover, the open source code of
many VIs allows for rapid adaptation to the
user needs.
Flexible integration in text-based program-
ming languages
The integration of PI positioning systems in
text-based programming languages under
Microsoft Windows or Linux is simplified by
program libraries and exemplary codes.
These libraries support all common pro-
gramming languages and all PI positioning
systems , allowing the PI GCS command set
functions to be integrated seamlessly in ex-
ternal programs.
Third-party software packages
Drivers for the PI GCS commands have now
been integrated in many third-party soft-
ware packages. This allows for the seamless
integration of PI positioning systems in soft-
ware suites such as MetaMorph, µManager,
MATLAB, and ScanImage. Moreover, EPICS
and TANGO drivers are available for integra-
tion into experiments of large-scale research
facilities. The drivers for µManager, MATLAB
and a large part of the EPICS drivers are being
developed and serviced in-house by PI.
Supported languages
and software environments
 C, C++, Python, Visual C++, Visual
Basic, Delphi
 LabVIEW, MATLAB, µManager, EPICS,
TANGO, MetaMorph
 and all programming environments
that support the loading of DLLs
31
P I
|
He x a
o ds
P
WWW.p i.WS
Hexapod-Specifi c Software
Due to their parallel kinematic structure,
Hexapods necessitate a particularly
complex control system. The position
coordinates, for example, are given in virtu-
al Cartesian axes which are then converted
into positioning commands for the indivi-
dual actuators by the controller. PI supplies
special software that allow the 6-axes posi-
tioners to be more convenient in operation
and easier to integrate.
Determining the work space
The limits of the work space vary depen-
ding on the current position of the Hexa-
pod (translation and rotation coordinates)
and the current coordinates of the pivot
point. A special software tool included with
each PI Hexapod calculates these limits and
displays them graphically.
Checking the permissible load
As with any multiaxis positioning system,
the load limit of the Hexapod varies as a
function of a number of factors such as
orientation of the Hexapod, size and
position of the payload, current position
(translation and rotation coordinates) of the
Hexapod platform, and forces and moments
acting on the platform.
The Hexapod software package includes a
PI simulation tool that calculates all forces
and moments and compares them individu-
ally against the specifi ed load limits of the
corresponding Hexapod mechanics.
Preventing collisions with PIVeriMove
Another proprietary PI simulation software
tool enables offl ine graphical confi guration
and simulation of the Hexapod motion in
the application environment. CAD data of
objects can be imported or approximated
with simple shapes such as cylinders and
cuboids. PIVeriMove then checks restric-
tions in the work space. Implemented in
the controller fi rmware or the application
software, this prevents the Hexapod from
approaching positions where the platform,
struts, or the mounted load would collide
with the surroundings.
Emulation: The Hexapod system
as a virtual machine
A virtual machine that can be installed
on the customer’s host PC is available to
emulate a complete Hexapod systems
(mechanics, controller and even periphe-
rals). Application programs can then be
developed and pre-tested, different load
scenarios can be simulated and the work
space can be determined before the system
arrives, saving signifi cant cost and develop-
ment time.
HexaApp: PI Hexapod control via iPhone,
iPad or iPod
The Hexapod system can also be controlled
wirelessly from mobile Apple iOS devices.
A corresponding app enables command
control of touchscreen, motion sensors or
via a command input window.
The simulation software graphically
displays the position and the available
work space of the Hexapod model
32
www.p i.ws
H E X A P O D S Y S T E MS | WWW.P I.WS
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/25.0
Hexapod Controller for Use at High Altitudes
High-End Digital Motion Controller
SI GNAL TRANSMI SSI ON OVER LONG DI STANCES
FOR MULTI AXI S SYSTEMS WI TH PI EZO STEPPI NG DRI VES AND COMPLEX CONTROL LOOPS
￿ Differential transmission of the
control signals over long
distances
￿ Control via TCP/IP
￿ Cooling system and special case
￿ Sophisticated controller using
vector algorithms
￿ Digital motion controller of the
newest generation: up to 50 kHz
servo update rate; highly stable
20-bit D/A converter
￿ Multiaxis coordinate transforma-
tion for parallel-kinematic systems
(Hexapods)
￿ Combined control of different
positioning technologies feasible
￿ Freely programmable,
virtual pivot point
￿ Data recorder
￿ Macro program functionality
￿ Extensive software support
￿ Flexible interfaces: Ethernet,
USB, RS-232
￿ Extensive software support
￿ Optional high-bandwidth
analog inputs and outputs
￿ Modular design for greatest
fl exibility in meeting custom
requirements
C-843K
E-712KNHC
In the ALMA project (Atacama desert, Chile), up to 64 antennas are combined to form a virtual single giant radio tele-
scope. Not only the Hexapod systems from PI, which position the secondary refl ectors in the antennas, must be adapted
to the extreme ambient conditions but also the controllers that send their commands sometimes over distances of
several hundreds of meters. This robust Hexapod controller is dedicated for use under such conditions and it can, there-
fore, easily dissipate heat even in thin mountain air and does not require a fan
The E-712 digital controller system can be confi gured to drive complex piezo positioning systems, for example parallel-
kinematic designs with piezo stepping drives. Multiaxis coordinate transformation and coordination of the individual
drive sequences required by the piezo-walk motors can be handled by the sophisticated fi rmware. Its modular design
allows the controller to be adapted quickly to any requirement such as a variety of feedback sensors and the integration
of additional control loops e.g. for active vibration damping
Appendix Micropositioning Nanometrology
Hexapods
Parallel Kinematics
Nanopositioning &
Piezoelectrics
Linear Actuators &
Motors
33
P I
|
He x a
o ds
P
www.p i.ws
For UHV- Compati ble Hexapod 6d- posi ti oner
Control-Loop Integrates Active Vibration Damping
Positioning systems for UHV environments
require special mechanical design features.
One particularly elegant solution is the im-
plementation of a parallel-kinematic 6-axis
Hexapod with constant leg length, in which
only passive parts of the drive system are
accommodated inside the vacuum cham-
ber. Electrical and electronic parts, such as
motors, sensors, wiring or parts in need of
lubrication are situated outside the vacuum
chamber. As a result, the space needs within
the chamber are very low and the passive
hexapod structure inside the chamber is
very stiff. Moreover, the vacuum is contami-
nated as little as possible and no additional
cooling of the drives is needed.
Integrated active vibration damping
A crucial factor for the precision is the de-
coupling of low frequency ambient vibra-
tions that excite resonances in the mecha-
nical system and thus would interfere with
the stability and precision of the platform.
For this purpose, the passive struts are
equipped with piezo ceramic actuators. A
newly developed 6D acceleration sensor
feeds vibration back to a closed-loop piezo
controller. Digital linearization algorithms
for the mechanical and electronic systems
and filter functions for the sensor signals
further enhance the performance resulting
in damping factors in excess of 20 for multi-
directional vibrations up to 50 Hz. Lineari-
zation algorithms for the mechanical and
electronic systems and filter functions for
the sensor values then allow undesired vib-
rations to be dampened completely.
© Physik Instrumente (PI) GmbH & Co. KG 2012. Subject to change without notice. Latest releases available at www.pi.ws. 12/06/04.0
Control design of an E-712 digital controller for active vibration damping
The Hexapod design is based on passive, constant-length
struts, where the position of the joint is being shifted by ex-
ternal linear actuators. The active and the passive structures
are separated by the base plate of the vacuum chamber
34
www.p i.ws
www.P i.ws
Application Examples
Patient positioning in radiotherapy
In modern medical technology, a Hexapod can help in radi-
ation treatment, for example: the Hexapod makes sure the
patient is brought into exactly the right position and orienta-
tion. This makes it possible to precisely direct the radiation
and mitigate the effect on surrounding tissue (figure: cour-
tesy of CIVCO Medical Solutions).
Positioning of telescope reflectors
In the ALMA project (Atacama desert, Chile), up to 64 an-
tennas are combined to form a virtual single giant radio
telescope. PI M-850k Hexapods are integrated to position
the secondary reflectors in the antennas. The M-850K me-
chanics and controllers, specially designed for operation in
hostile conditions, can position loads of up to 75 kg with
sub-micron resolution (figure: © ALMA: ESO/NAOJ/NRAO).
Laboratory technology
The M-850 PI Hexapod here aligns a UHV chamber for
crystallographic experiments with high-energy X-rays (figu-
re: Beamline I811, MAX-lab, Lund, Sweden / UHV chamber:
Dr. J. Alvarez, Universidad Autonoma de Madrid, Spain).
For HAndli ng systeMs, tool i nsPecti on, Medi cAl tecHnology, sPAce telescoPes, …
Magnetic levitation platform
An unusual example of a Hexapod positioning system:
instead of struts, magnetic fields ensure that the platform
assumes and maintains the desired position. The relatively
large XY motions are accompanied by small angles and Z
displacements with accuracy in the nanometer range. The
control and operation is performed by a digital controller.
In addition to high accelerations and velocities the system
is frictionless, vacuum compatible and does not generate
any particles.
www.P i.ws
Application Examples
Patient positioning in radiotherapy
In modern medical technology, a Hexapod can help in radi-
ation treatment, for example: the Hexapod makes sure the
patient is brought into exactly the right position and orienta-
tion. This makes it possible to precisely direct the radiation
and mitigate the effect on surrounding tissue (figure: cour-
tesy of CIVCO Medical Solutions).
Positioning of telescope reflectors
In the ALMA project (Atacama desert, Chile), up to 64 an-
tennas are combined to form a virtual single giant radio
telescope. PI M-850k Hexapods are integrated to position
the secondary reflectors in the antennas. The M-850K me-
chanics and controllers, specially designed for operation in
hostile conditions, can position loads of up to 75 kg with
sub-micron resolution (figure: © ALMA: ESO/NAOJ/NRAO).
Laboratory technology
The M-850 PI Hexapod here aligns a UHV chamber for
crystallographic experiments with high-energy X-rays (figu-
re: Beamline I811, MAX-lab, Lund, Sweden / UHV chamber:
Dr. J. Alvarez, Universidad Autonoma de Madrid, Spain).
For HAndli ng systeMs, tool i nsPecti on, Medi cAl tecHnology, sPAce telescoPes, …
35
P I
|
He x a
o ds
P
n


Consists of P-611.3SF NanoCube
®

XYZ nanopositioning system,
100 x 100 x 100 µm, strain gauge
sensors with integrated fiber adapter
interface and E-760.3S0 NanoCube
®

piezo controller board, ISA bus
n


Optical inputs in the 480 to 1040 nm
range
n


Analog inputs 0–10 V
n


Optical inputs in the 850 to 1680 nm
range
n


Analog inputs 0–10 V
n


For differential signal transmission
n


For quick interchange of complete
pre-mounted setups
n


magnetic kinematically clamped
n


Integrates vision systems with PI micro-
and nanopositioners
n


Includes standard procedures e.g. for
gap measurement, autofocus, aligning
edges as well as complex alignment
routines in six degrees of freedom with
an unlimited number of axes of motion
n


Mount on a Variety of PI Alignment
Systems
n


Precision Machined from High-Strength
Aluminum/Brass
n


Manual control
n


Freely definable step size
n


Display for position values
C-887.MC

Hexapod Control Unit, USB Connector,
3 m Cable
F-206.NCU
Rapid 3-Axis Piezo Nanopositioning
System
For use in combination with Hexapod
systems
F-206.VVU
Photometer Card, Visible Range,
2 Channels
F-206.iiU
Photometer Card, IR Range, 2 Channels
C-887.A20
Hexapod Cable Set, 20 m
F-206.TMU
Additional Mounting Platform
Fits H-206 Hexapods
F-311.LV
PIMotion&Vision LabVIEW Driver Set
Supports intelligent automated
procedure
F-603
Fiber, Objective and Waveguide
Holders
Fits H-206 and P-611 NanoCube
®
Accessories
For Hexapod systems
For more information, see www.pi.ws
36
www.p i.ws
PI (Physik Instrumente) is the leading supplier
of piezo-based positioning systems with
accuracies in the range of a few nanometers.
The extensive product portfolio is based on
a wide range of technologies with electromo-
tive or piezoelectric drives for up to six mo-
tion axes. Hexapods, nanometer sensors,
control electronics as well as software and
are supplemented by customized solutions.
All key technologies are developed in-house.
This means that every phase from the design
right down to the shipment can be controlled:
The precision mechanics and the electronics
as well as the position sensors and the piezo
ceramics or actuators. The latter are pro-
duced by the subsidiary company PI Ceramic.
PI is, therefore, the only manufacturer of nano-
positioning technology which employs the
piezoelectric drives it produces. This ensures
a high degree of flexibility for developing
customized piezoceramic components.
More than 100 patents and patents applied
for stand for more than 40 years of experi-
ence and pioneering work. PI products are
employed wherever technology in industry
and research is pushed forward – worldwide.
With four German factories and ten subsidiar-
ies and sales offices abroad, the PI group is
represented internationally.
PI stands for quality in products, processes
and service. The ISO-9001 certification,
which focuses not only on product quality
but also on customer expectations and
satisfaction, was achieved back in 1994.
PI is also certified according to the ISO
14001 (environmental management) and
OHSAS 18001 (occupational safety) stan-
dards, which taken together form an Inte-
grated Management System (IMS).
Future Technology
Solutions
Today PI delivers micro

-

and nanopositioning solu-
tions for all important
high

-tech markets:
n


Semiconductor technology
n


Optical metrology,
microscopy
n


Biotechnology and
medical devices
n


Precision automation
and handling
n


Precision machining
n


Data storage technology
n


Photonics, tele-
communications
n


Nanotechnology
n


Micropositioning
n


Aviation and aerospace
n


Astronomy
F
or

i ndustry

and

researc
H
Drives that Set the World in Motion
37
P I
|
He x a
o ds
P
1970

PI founding year
1
977

PI headquarters move to Waldbronn,
Germany
1
987

Foundation of a subsidiary in the USA
1
991

Foundation of a subsidiary in Japan
1
991

Market launch of 6-axis parallel-

kinematics positioning systems
(Hexapods)
1992

Foundation of PI Ceramic, Thuringia,
Germany; crucial step towards market
leadership in nanopositioning
1
993

Foundation of subsidiaries in the UK
and in France
1
994

Market launch of capacitive position
sensors
1
995

Foundation of a subsidiary in Italy
1
998

Market launch of digital control

electronics
2001


Market launch of PILine
®
Ultrasonic
Piezomotors
2001

New company building in Karlsruhe,
Germany
2002

PI Ceramic company building extended
20
02

Foundation of a subsidiary in China
20
02

Market launch of PICMA
®
multilayer
Piezo stack actuators
2004

Market launch of NEXLINE
®
high-
performance piezo linear drives
2007

Market launch of NEXACT
®
piezo
linear drives
2010

Acquisition of the expansion site next
to the PI headquarters
2011

Foundation of a subsidiary in Korea
2011

Foundation of a subsidiary in Singapore
2011

Acquisition of the majority shares of
miCos GmbH
2012

Extension of the buildings in Karlsruhe
and Lederhose
a

s
uc c e s s
s
t o r y
Milestones
37
38
www.p i.ws
1
WWW.P I.WS
P I E Z O NA NO P O S I T I O NI NG
P I E Z O NA NO P O S I T I O NI NG
NANOPOSI TI ONI ERSYSTEME, MI KROSTELLTECHNI K &
NANOMESSTECHNI K
Produktportfolio

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Beliebige, unbegrenzte Stellwege

Mechanisch einfach integrierbar

Selbsthemmend im Ruhezustand

Haltekraft bis 15 N

Geschwindigkeit bis 500 mm/s
Ultraschall-Piezomotoren können klassische Motor-Spin-
del-Kombinationen oder magnetische Antriebe ersetzen
und ermöglichen bei der Integration in Positioniersyste-
me besonders niedrige Profilhöhen. Sie bieten auf klein-
stem Bauraum dynamisches Start-/Stoppverhalten, hohe
Ge schwindigkeit und Selbsthemmung. PI bietet minia-
tu ri sierte Varianten, OEM-Motoren und -Antriebe sowie
kom plette Positioniersysteme mit Controller an. Piezo-
motoren von PI sind im Prinzip vakuumtauglich und für
den Betrieb unter starken Magnet feldern geeignet.
PILine
®
Ultraschall-Piezomotoren
Klein und schnell über große Strecken
Nanopositionierung
Auflösung bis in den Picometer-Bereich

Von linearen Achsen bis hin zu
6 Freiheitsgraden der Bewegung

Parallelkinematisches Prinzip
für mehrachsige Systeme

Versionen mit direkter Positions-
messung
– kapazitive Sensoren:
Sub-Nanometer-Auflösung
– Inkrementelle Sensoren: Nano-
meter-Auflösung, große Mess-
bereiche

Variabel in Bauform, Stellweg und
Präzisionsklasse
Nanopositioniersysteme bieten Bewegungsauflösung
und Positioniergenauigkeit im Bereich von Nanometern
und darunter. Die Zielposition wird innerhalb weniger
Millisekunden erreicht und stabil gehalten. Als Antrieb
werden Piezoaktoren oder Piezoschreitantriebe einge-
setzt. Eine Optimierung der Systemperformance wird
durch digitale Motion Controller erzielt. Benötigt werden
diese Systeme beispielsweise in der optischen Mess-
technik, Mikroskopie oder Chipherstellung. Um die erfor-
derliche Positionsauflösung und Stabilität zu erzielen,
entwickelt und fertigt PI die Sensorik selbst und bietet
diese als eigenständige Produktlinie an.

Zwei Prinzipien:
– NEXLINE
®
: bis zu 600 N Stellkraft
– NEXACT
®
: schnelle Bewegung
und bis zu 10 N Stellkraft

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Kompakte Bauform, variabler Stell-
weg durch variable Läuferlänge

Nanometer-Auflösung

Vakuumkompatibel und
nichtmagnetisch
Piezoschreitantriebe übertragen die Vorteile von Piezo-
aktoren auf Anwendungen mit größeren Stellwegen.
Das Zusammenspiel der Bewegung einzelner Aktoren
bewirkt eine Schreitbewegung mit hoher Auflösung und
Dynamik innerhalb eines Schritts und ermöglicht dabei
prinzipiell unbegrenzte Stellwege. Die Aktoren sind
gegen den bewegten Läufer vorgespannt. Der Antrieb
ist somit im ausgeschalteten Zustand selbsthemmend
ohne Halteströme oder zusätzliche mechanische Kom-
ponenten. Dadurch treten keine Erwärmung oder Regel-
zittern auf, der Antrieb steht stabil.
PiezoWalk
®
Schreitantriebe
Über Millimeter präzise positionieren
pi_120226_portfolio_musterseite.indd 1
26.03.12 13:47
1
WWW.P I.WS
P I E Z O NA NO P O S I T I O NI NG
P I E Z O NA NO P O S I T I O NI NG
NANOPOSI TI ONI ERSYSTEME, MI KROSTELLTECHNI K &
NANOMESSTECHNI K
Produktportfolio

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Beliebige, unbegrenzte Stellwege

Mechanisch einfach integrierbar

Selbsthemmend im Ruhezustand

Haltekraft bis 15 N

Geschwindigkeit bis 500 mm/s
Ultraschall-Piezomotoren können klassische Motor-Spin-
del-Kombinationen oder magnetische Antriebe ersetzen
und ermöglichen bei der Integration in Positioniersyste-
me besonders niedrige Profilhöhen. Sie bieten auf klein-
stem Bauraum dynamisches Start-/Stoppverhalten, hohe
Ge schwindigkeit und Selbsthemmung. PI bietet minia-
tu ri sierte Varianten, OEM-Motoren und -Antriebe sowie
kom plette Positioniersysteme mit Controller an. Piezo-
motoren von PI sind im Prinzip vakuumtauglich und für
den Betrieb unter starken Magnet feldern geeignet.
PILine
®
Ultraschall-Piezomotoren
Klein und schnell über große Strecken
Nanopositionierung
Auflösung bis in den Picometer-Bereich

Von linearen Achsen bis hin zu
6 Freiheitsgraden der Bewegung

Parallelkinematisches Prinzip
für mehrachsige Systeme

Versionen mit direkter Positions-
messung
– kapazitive Sensoren:
Sub-Nanometer-Auflösung
– Inkrementelle Sensoren: Nano-
meter-Auflösung, große Mess-
bereiche

Variabel in Bauform, Stellweg und
Präzisionsklasse
Nanopositioniersysteme bieten Bewegungsauflösung
und Positioniergenauigkeit im Bereich von Nanometern
und darunter. Die Zielposition wird innerhalb weniger
Millisekunden erreicht und stabil gehalten. Als Antrieb
werden Piezoaktoren oder Piezoschreitantriebe einge-
setzt. Eine Optimierung der Systemperformance wird
durch digitale Motion Controller erzielt. Benötigt werden
diese Systeme beispielsweise in der optischen Mess-
technik, Mikroskopie oder Chipherstellung. Um die erfor-
derliche Positionsauflösung und Stabilität zu erzielen,
entwickelt und fertigt PI die Sensorik selbst und bietet
diese als eigenständige Produktlinie an.

Zwei Prinzipien:
– NEXLINE
®
: bis zu 600 N Stellkraft
– NEXACT
®
: schnelle Bewegung
und bis zu 10 N Stellkraft

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Kompakte Bauform, variabler Stell-
weg durch variable Läuferlänge

Nanometer-Auflösung

Vakuumkompatibel und
nichtmagnetisch
Piezoschreitantriebe übertragen die Vorteile von Piezo-
aktoren auf Anwendungen mit größeren Stellwegen.
Das Zusammenspiel der Bewegung einzelner Aktoren
bewirkt eine Schreitbewegung mit hoher Auflösung und
Dynamik innerhalb eines Schritts und ermöglicht dabei
prinzipiell unbegrenzte Stellwege. Die Aktoren sind
gegen den bewegten Läufer vorgespannt. Der Antrieb
ist somit im ausgeschalteten Zustand selbsthemmend
ohne Halteströme oder zusätzliche mechanische Kom-
ponenten. Dadurch treten keine Erwärmung oder Regel-
zittern auf, der Antrieb steht stabil.
PiezoWalk
®
Schreitantriebe
Über Millimeter präzise positionieren
pi_120226_portfolio_musterseite.indd 1
26.03.12 13:47
1
WWW.P I.WS
P I E Z O NA NO P O S I T I O NI NG
P I E Z O NA NO P O S I T I O NI NG
NANOPOSI TI ONI ERSYSTEME, MI KROSTELLTECHNI K &
NANOMESSTECHNI K
Produktportfolio

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Beliebige, unbegrenzte Stellwege

Mechanisch einfach integrierbar

Selbsthemmend im Ruhezustand

Haltekraft bis 15 N

Geschwindigkeit bis 500 mm/s
Ultraschall-Piezomotoren können klassische Motor-Spin-
del-Kombinationen oder magnetische Antriebe ersetzen
und ermöglichen bei der Integration in Positioniersyste-
me besonders niedrige Profilhöhen. Sie bieten auf klein-
stem Bauraum dynamisches Start-/Stoppverhalten, hohe
Ge schwindigkeit und Selbsthemmung. PI bietet minia-
tu ri sierte Varianten, OEM-Motoren und -Antriebe sowie
kom plette Positioniersysteme mit Controller an. Piezo-
motoren von PI sind im Prinzip vakuumtauglich und für
den Betrieb unter starken Magnet feldern geeignet.
PILine
®
Ultraschall-Piezomotoren
Klein und schnell über große Strecken
Nanopositionierung
Auflösung bis in den Picometer-Bereich

Von linearen Achsen bis hin zu
6 Freiheitsgraden der Bewegung

Parallelkinematisches Prinzip
für mehrachsige Systeme

Versionen mit direkter Positions-
messung
– kapazitive Sensoren:
Sub-Nanometer-Auflösung
– Inkrementelle Sensoren: Nano-
meter-Auflösung, große Mess-
bereiche

Variabel in Bauform, Stellweg und
Präzisionsklasse
Nanopositioniersysteme bieten Bewegungsauflösung
und Positioniergenauigkeit im Bereich von Nanometern
und darunter. Die Zielposition wird innerhalb weniger
Millisekunden erreicht und stabil gehalten. Als Antrieb
werden Piezoaktoren oder Piezoschreitantriebe einge-
setzt. Eine Optimierung der Systemperformance wird
durch digitale Motion Controller erzielt. Benötigt werden
diese Systeme beispielsweise in der optischen Mess-
technik, Mikroskopie oder Chipherstellung. Um die erfor-
derliche Positionsauflösung und Stabilität zu erzielen,
entwickelt und fertigt PI die Sensorik selbst und bietet
diese als eigenständige Produktlinie an.

Zwei Prinzipien:
– NEXLINE
®
: bis zu 600 N Stellkraft
– NEXACT
®
: schnelle Bewegung
und bis zu 10 N Stellkraft

Integrationsstufen vom preis-
günstigen OEM-Antrieb bis zum
mehrachsigen Positioniersystem

Kompakte Bauform, variabler Stell-
weg durch variable Läuferlänge

Nanometer-Auflösung

Vakuumkompatibel und
nichtmagnetisch
Piezoschreitantriebe übertragen die Vorteile von Piezo-
aktoren auf Anwendungen mit größeren Stellwegen.
Das Zusammenspiel der Bewegung einzelner Aktoren
bewirkt eine Schreitbewegung mit hoher Auflösung und
Dynamik innerhalb eines Schritts und ermöglicht dabei
prinzipiell unbegrenzte Stellwege. Die Aktoren sind
gegen den bewegten Läufer vorgespannt. Der Antrieb
ist somit im ausgeschalteten Zustand selbsthemmend
ohne Halteströme oder zusätzliche mechanische Kom-
ponenten. Dadurch treten keine Erwärmung oder Regel-
zittern auf, der Antrieb steht stabil.
PiezoWalk
®
Schreitantriebe
Über Millimeter präzise positionieren
pi_120226_portfolio_musterseite.indd 1
26.03.12 13:47
nanoposi ti oni ng

systems
,
mi croposi ti oni ng

tec
H
nology
&
nanometrology
Product Portfolio
Nanopositioning
Resolution Down to Picometers
Nanopositioning systems achieve motion resolutions
and positioning accuracy in the nanometer range and
below. The target position is achieved within a few
milliseconds and stably maintained. Piezo actuators
or piezo stepping drives are used as drives. Digital
motion controllers optimize the performance of the
system. These systems are required in optical me-
trology, microscopy, or in microchip production. To
achieve the necessary position resolution and stabili-
ty, PI manufactures and develops the sensor systems
and offers these as an independent product line.


From linear axes to motion in 6
degrees of freedom


Parallel-kinematic principle for multi-
axis systems


Versions with direct position mea-
surement



capacitive sensors:
Subnanometer resolution



Incremental sensors: Nanometer
resolution, wide measurement
ranges


Available in a variety of designs,
travel ranges, and precision classes
PiezoWalk
®
Stepping Drives
Precise Positioning over Several Millimeters
Piezo stepping drives transfer the advantages of con-
ventional piezo actuators to applications with larger
travel ranges. The interplay of the motion of indivi-
dual actuators brings about a walk motion with high
resolution and dynamics within a single step and
thus, in principle, allows unlimited travel ranges. The
actuators are prestressed against the moving slider.
The drive is therefore self-locking when switched off
without holding currents or additional mechanical
components. There is therefore no heat dissipation
or control dither, the position is maintained with a
high degree of stability.


Two principles:



NEXLINE
®
: Generated force up to
600 N



NEXACT
®
: Fast motion and gen-
erated force up to 10 N


Integration levels from an econo-
mical OEM drive to a multi-axis posi-
tioning system


Compact design, variable travel due
to variable rod length


Nanometer resolution


Vacuum compatible and non-
magnetic
PILine
®
Ultrasonic Piezomotors
Small and Fast over Long Distances
Ultrasonic piezomotors are an alternative to the con-
ventional motor spindle combinations or to mag-
netic drives and allow outstandingly flat positioning
systems. They offer excellent start/stop dynamics,
high velocity and self-locking in a small package.
PI supplies miniaturized versions, OEM motors and
drives, and also complete positioning systems with
controller. Piezomotors from PI are vacuum-compa-
tible in principle and suitable for operation under
strong magnetic fields.


Integration levels from an econo-
mical OEM drive to a multi-axis posi-
tioning system


Flexible travel ranges


Easy mechanical integration


Self-locking at rest


Holding force to 15 N


Velocity to 500 mm/s
39
P I
|
He x a
o ds
P
2

Linearpositionierer
– Stellwege von 5 bis 1000 mm
– Geschwindigkeit bis zu 150 mm/s
– Preisgünstige Designs, Varianten
als Baukastensystem

DC- und Stepper-Mikrometerantriebe
– Stellwege bis 50 mm und
Geschwindigkeit bis zu 30 mm/s
– Auflösung bis <100 nm

Rotationsversteller mit unein-
geschränktem Drehbereich
– bis 720 °/s
– Auflösung bis 1 μrad
– Optionale Encoder für die direkte
Positionsmessung
Mikropositioniersysteme bieten Bewegungsauflösungen
und Positioniergenauigkeiten im Bereich zwischen eini-
gen 10 μm bis zu 0,1 μm. Als Antrieb stehen bürstenlose
DC- oder Schrittmotoren zur Verfügung wie auch Linear-
antriebe wie PILine
®
Ultraschall-Piezomotoren oder
NEXACT
®
Piezo schreitantriebe. Die Präzision des Sys-
tems hängt ab von den verwendeten Komponenten für
Antrieb, Positionssensor und Führung. Bei klassischen
Motoren spielt außerdem die Qualität des Getriebes,
der Spindel bzw. des Schneckentriebs eine wesentliche
Rolle. Digitale Steuerungen ermöglichen durch geeignete
Regelungs- und Linearisierungsverfahren eine Verbes-
serung der Systemeigenschaften.
Mikropositionierung
Präzisionspositionierung auf langen Wegen

Für alle Antriebssysteme

Hochauflösende D/A- und A/D-
Wandler neueste Prozessoren

Digitale Echtzeit-Schnittstellen

Umfangreiche Software und Treiber

Koordinateninformation für
parallele Kinematiken/Hexapoden
Die Leistungsmerkmale eines Präzisions-Positioniersys-
tems hängt in gleichen Maßen von der Verstellmechanik
wie von der Ansteuerung ab. Digitalcontroller verarbeiten
Prozesswerte wie Sensorsignal oder Positionswertvor-
gabe mit speziell abgestimmten Algorithmen. So können
Bewegungen auf Bahnkurven, Einschwingzeiten oder
Bahnabweichungen während schneller Scanvorgänge
optimiert werden.
Digitale Steuer- und Regeltechnik
Das Optimum an Performance erreichen

Geringe bewegte Masse,
geringe Trägheit

Gutes dynamisches Verhalten,
schnelles Einschwingen

Geringer Bauraum

Hohe Steifigkeit

Frei definierbarer Drehpunkt

Minimiertes Achsübersprechen

Sehr gute Wiederholbarkeit
Überall dort, wo eine mehrachsige und hochpräzise Be -
wegung erforderlich ist, setzt PI auf parallelkinematische
Designs. Alle Antriebe wirken unmittelbar auf dieselbe
bewegte Plattform. Dadurch ergeben sich Vorteile in der
Präzision und Dynamik im Vergleich zu seriell gestapel-
ten Achsen, bei denen sich die Fehler der Einzelachsen
aufsummieren und dynamische Einbußen durch das
Mitführen der oberen Achsen entstehen. Das parallel-
kinematische Prinzip ist dabei unabhängig vom verwen-
deten Antrieb. So können Mikro- und Nanostelltechnik-
systeme mit bis zu sechs Freiheitsgraden der Bewegung
umgesetzt werden.
Hexapoden — Parallelkinematische
Positioniersysteme
Hochpräzise Positionierung in bis zu sechs
Bewegungsachsen
pi_120226_portfolio_musterseite.indd 2
26.03.12 13:47
Micropositioning
Precision Positioning over Long Travel
Micropositioning systems provide motion resolution
and positioning accuracies in the range between a
few tens of micrometers and 0.1 µm. Brushless DC
or stepper motors are available as drives, as well as
linear drives such as PILine
®
ultrasonic piezomotors
or NEXACT
®
piezo stepping drives. The precision of
the system depends on the integrated drive, position
sensor, and guides. In conventional motors, the
quality of the gear, the spindle, or the worm drive
play also an essential role. Digital controls with
suitable control and linearization methods make it
possible to improve the system characteristics.
2

Linearpositionierer
– Stellwege von 5 bis 1000 mm
– Geschwindigkeit bis zu 150 mm/s
– Preisgünstige Designs, Varianten
als Baukastensystem

DC- und Stepper-Mikrometerantriebe
– Stellwege bis 50 mm und
Geschwindigkeit bis zu 30 mm/s
– Auflösung bis <100 nm

Rotationsversteller mit unein-
geschränktem Drehbereich
– bis 720 °/s
– Auflösung bis 1 μrad
– Optionale Encoder für die direkte
Positionsmessung
Mikropositioniersysteme bieten Bewegungsauflösungen
und Positioniergenauigkeiten im Bereich zwischen eini-
gen 10 μm bis zu 0,1 μm. Als Antrieb stehen bürstenlose
DC- oder Schrittmotoren zur Verfügung wie auch Linear-
antriebe wie PILine
®
Ultraschall-Piezomotoren oder
NEXACT
®
Piezo schreitantriebe. Die Präzision des Sys-
tems hängt ab von den verwendeten Komponenten für
Antrieb, Positionssensor und Führung. Bei klassischen
Motoren spielt außerdem die Qualität des Getriebes,
der Spindel bzw. des Schneckentriebs eine wesentliche
Rolle. Digitale Steuerungen ermöglichen durch geeignete
Regelungs- und Linearisierungsverfahren eine Verbes-
serung der Systemeigenschaften.
Mikropositionierung
Präzisionspositionierung auf langen Wegen

Für alle Antriebssysteme

Hochauflösende D/A- und A/D-
Wandler neueste Prozessoren

Digitale Echtzeit-Schnittstellen

Umfangreiche Software und Treiber

Koordinateninformation für
parallele Kinematiken/Hexapoden
Die Leistungsmerkmale eines Präzisions-Positioniersys-
tems hängt in gleichen Maßen von der Verstellmechanik
wie von der Ansteuerung ab. Digitalcontroller verarbeiten
Prozesswerte wie Sensorsignal oder Positionswertvor-
gabe mit speziell abgestimmten Algorithmen. So können
Bewegungen auf Bahnkurven, Einschwingzeiten oder
Bahnabweichungen während schneller Scanvorgänge
optimiert werden.
Digitale Steuer- und Regeltechnik
Das Optimum an Performance erreichen

Geringe bewegte Masse,
geringe Trägheit

Gutes dynamisches Verhalten,
schnelles Einschwingen

Geringer Bauraum

Hohe Steifigkeit

Frei definierbarer Drehpunkt

Minimiertes Achsübersprechen

Sehr gute Wiederholbarkeit
Überall dort, wo eine mehrachsige und hochpräzise Be -
wegung erforderlich ist, setzt PI auf parallelkinematische
Designs. Alle Antriebe wirken unmittelbar auf dieselbe
bewegte Plattform. Dadurch ergeben sich Vorteile in der
Präzision und Dynamik im Vergleich zu seriell gestapel-
ten Achsen, bei denen sich die Fehler der Einzelachsen
aufsummieren und dynamische Einbußen durch das
Mitführen der oberen Achsen entstehen. Das parallel-
kinematische Prinzip ist dabei unabhängig vom verwen-
deten Antrieb. So können Mikro- und Nanostelltechnik-
systeme mit bis zu sechs Freiheitsgraden der Bewegung
umgesetzt werden.
Hexapoden — Parallelkinematische
Positioniersysteme
Hochpräzise Positionierung in bis zu sechs
Bewegungsachsen
pi_120226_portfolio_musterseite.indd 2
26.03.12 13:47
PICMA
®
Piezo Ceramic Multilayer Actuators
Higher Reliability and Performance
PI uses its own PICMA
®
piezo ceramic actuators in
its high-precision positioning systems for nanoposi-
tioning. Their all-ceramic insulation makes for high-
est humidity resistance which results in superior re-
liability and lifetime. With the piezo ceramics deve-
lopment being part of the PI group a fast and flexible
adaptation to customers‘ requirements is possible.


Long lifetime, unaffected by
humidity


Flexible cross sections and
displacements


Resolution to below one nanometer


Response time to below one
millisecond


For all drive systems


High resolution D/A and A/D con-
verters, state of the art processor
technology


Digital real-time interfaces


Extensive software and drivers


Information on coordinates for
parallel kinematics/Hexapods
Digital Control Technology
Achieve the Optimum in Performance
The performance characteristics of a precision po-
sitioning system depend equally on the stage me-
chanics and the control. Digital controllers use spe-
cially adapted algorithms to process process values
such as sensor signal or position target value. Mo-
tions on trajectories, settling times, or trajectory de-
viations can thus be optimized during fast scanning
operations.


Linear positioners



Travel ranges between 5 and
1000 mm



Velocity to 150 mm/s



Low-cost designs, variants as
modular system


DC and stepper micrometer drives



Travel ranges to 50 mm and veloci-
ty to 30 mm/s



Resolution to <100 nm


Rotary stage with unlimited slewing
range



t
o 720 °/s



Resolution to 1 µrad



ncremental encoders for direct po-
sition measurement as an optional
extra
www.p i.ws
WWW.P I.WS
P I E Z O NA NO P O S I T I O NI NG
JAPAN
PI Japan Co., Ltd.
Tachikawa
Business Center Bldg. 5F
2-38-5 Akebono-cho
Tachikawa-shi, Tokyo 190-0012
Tel. +81 (42) 526 7300
Fax +81 (42) 526 7301
info@pi-japan.jp
www.pi-japan.jp
PI Japan Co., Ltd.
Hanahara Daini Bldg. #703
4-11-27 Nishinakajima
Yodogawa-ku, Osaka-shi
Osaka 532-0011
Tel. +81 (6) 6304 5605
Fax +81 (6) 6304 5606
info@pi-japan.jp
www.pi-japan.jp
ITALY
Physik Instrumente (PI) S. r. l.
Via G. Marconi, 28
20091 Bresso (MI)
Tel. +39 (02) 665 011 01
Fax +39 (02) 610 396 56
info@pionline.it
www.pionline.it
CHINA
Physik Instrumente
(PI Shanghai) Co., Ltd.
Building No. 7-106
Longdong Avenue 3000
201203 Shanghai, China
Tel. +86 (21) 518 792 98
Fax +86 (21) 687 900 98
info@pi-china.cn
www.pi-china.cn
UK & IRELAND
PI (Physik Instrumente) Ltd.
Trent House, University Way,
Cranfield Technology Park,
Cranfield, Bedford MK43 0AN
Tel. +44 (1234) 756 360
Fax +44 (1234) 756 369
uk@pi.ws
www.physikinstrumente.co.uk
FRANCE
PI France S.A.S.
244 bis, avenue Marx Dormoy
92120 Montrouge
Tel. +33 (1) 55 22 60 00
Fax +33 (1) 41 48 56 62
info.france@pi.ws
www.pifrance.fr
Subsidiaries
USA (East) & CANADA USA (West) & MEXIKO
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
Tel. +1 (508) 832 3456
Fax +1 (508) 832 0506
info@pi-usa.us
www.pi-usa.us
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel. +1 (949) 679 9191
Fax +1 (949) 679 9292
info@pi-usa.us
www.pi-usa.us
SOUTH EAST ASIA
PI (Physik Instrumente)
Singapore LLP
20 Sin Ming Lane
#05-60 Midview City
Singapore 573968
Tel. +65 665 98400
Fax +65 665 98404
info-sg@pi.ws
www.pi-singapore.sg
For ID / MY / PH / SG / TH
KOREA
PI Korea Ltd.
6F Jeongu Bldg.
Cheonho-Daero 1111
Gangdong-gu
138-814 Seoul
Tel. +82 2475 0060
Fax +82 2475 3663
info-kr@pi.ws
www.pi-korea.ws
Headquarters
GERMANY
Physik Instrumente (PI)
GmbH & Co. KG
Auf der Roemerstr. 1
76228 Karlsruhe/Palmbach
Tel. +49 (721) 4846-0
Fax +49 (721) 4846-1019
info@pi.ws
www.pi.ws
PI miCos GmbH
Eschbach
info@pimicos.de
www.pimicos.de
PI Ceramic GmbH
Lederhose
info@piceramic.de
www.piceramic.de
pi_rueckseite_e_A4.indd 1
23.01.12 11:24
WWW.PI.WS
PIEZO NANO POSITIONING
JAPAN
PI Japan Co., Ltd.
Tachikawa
Business Center Bldg. 5F
2-38-5 Akebono-cho
Tachikawa-shi, Tokyo 190-0012
Tel. +81 (42) 526 7300
Fax +81 (42) 526 7301
info@pi-japan.jp
www.pi-japan.jp
PI Japan Co., Ltd.
Hanahara Daini Bldg. #703
4-11-27 Nishinakajima
Yodogawa-ku, Osaka-shi
Osaka 532-0011
Tel. +81 (6) 6304 5605
Fax +81 (6) 6304 5606
info@pi-japan.jp
www.pi-japan.jp
ITALY
Physik Instrumente (PI) S. r. l.
Via G. Marconi, 28
20091 Bresso (MI)
Tel. +39 (02) 665 011 01
Fax +39 (02) 610 396 56
info@pionline.it
www.pionline.it
CHINA
Physik Instrumente
(PI Shanghai) Co., Ltd.
Building No. 7-106
Longdong Avenue 3000
201203 Shanghai, China
Tel. +86 (21) 518 792 98
Fax +86 (21) 687 900 98
info@pi-china.cn
www.pi-china.cn
UK & IRELAND
PI (Physik Instrumente) Ltd.
Trent House, University Way,
Cranfield Technology Park,
Cranfield, Bedford MK43 0AN
Tel. +44 (1234) 756 360
Fax +44 (1234) 756 369
uk@pi.ws
www.physikinstrumente.co.uk
FRANCE
PI France S.A.S.
244 bis, avenue Marx Dormoy
92120 Montrouge
Tel. +33 (1) 55 22 60 00
Fax +33 (1) 41 48 56 62
info.france@pi.ws
www.pifrance.fr
Subsidiaries
USA (East) & CANADA USA (West) & MEXIKO
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501
Tel. +1 (508) 832 3456
Fax +1 (508) 832 0506
info@pi-usa.us
www.pi-usa.us
PI (Physik Instrumente) L.P.
5420 Trabuco Rd., Suite 100
Irvine, CA 92620
Tel. +1 (949) 679 9191
Fax +1 (949) 679 9292
info@pi-usa.us
www.pi-usa.us
SOUTH EAST ASIA
PI (Physik Instrumente)
Singapore LLP
20 Sin Ming Lane
#05-60 Midview City
Singapore 573968
Tel. +65 665 98400
Fax +65 665 98404
info-sg@pi.ws
www.pi-singapore.sg
For ID / MY / PH / SG / TH
KOREA
PI Korea Ltd.
6F Jeongu Bldg.
Cheonho-Daero 1111
Gangdong-gu
138-814 Seoul
Tel. +82 (2) 475-0060
Fax +82 (2) 475-3663
info-kr@pi.ws
www.pi-korea.ws
Headquarters
GERMANY
Physik Instrumente (PI)
GmbH & Co. KG
Auf der Roemerstr. 1
76228 Karlsruhe
Tel. +49 (721) 4846-0
Fax +49 (721) 4846-1019
info@pi.ws
www.pi.ws
PI miCos GmbH
Eschbach
info@pimicos.de
www.pimicos.com
PI Ceramic GmbH
Lederhose
info@piceramic.de
www.piceramic.com
pi_rueckseite_e_A4.indd 1
25.06.12 13:56
P I E Z O T E C H N O L O G Y
Piezoelectric
Ceramic Products
FUNDAMENTALS,CHARACTERI STI CS AND APPLI CATI ONS
PI EZOCERAMI C
MATERI ALS
COMPONENTS
I NTEGRATI ON
P I E Z O NA NO P O S I T I O NI NG
H e a d q u a r t e r s
G E R MA N Y
P h y s i k I n s t r u me n t e ( P I )
Gmb H & C o.K G
A u f d e r R o e me r s t r a ß e 1
7 6 2 2 8 K a r l s r u h e/P a l mb a c h
Te l:+ 4 9 ( 7 2 1 ) 4 8 4 6 - 0
F a x:+ 4 9 ( 7 2 1 ) 4 8 4 6 - 1 0 1 9
E ma i l:i n f o @p i.ws
www.p i.ws
S u b s i d i a r i e s
U S A & C A N A D A ( E a s t )
P I ( P h y s i k I n s t r u me n t e ) L.P.
1 6 A l b e r t S t.
A u b u r n,MA 0 1 5 0 1
Te l:+ 1 ( 5 0 8 ) 8 3 2 3 4 5 6
F a x:+ 1 ( 5 0 8 ) 8 3 2 0 5 0 6
E ma i l:i n f o @p i - u s a.u s
www.p i - u s a.u s
J A P A N
P I J a p a n C o.,L t d.
A k e b o n o - c h o 2 - 3 8 - 5
Ta c h i k a wa - s h i
To k y o 1 9 0 - 0 0 1 2
Te l:+ 8 1 ( 4 2 ) 5 2 6 7 3 0 0
F a x:+ 8 1 ( 4 2 ) 5 2 6 7 30 1
E m
a i l:i n f o @p i - j a p a n.j p
www.p i - j a p a n.j p
P I J a p a n C o.,L t d.
Ha n a h a r a Da i - Ni - B u i l d i n g#7 0 3
4 - 1 1 - 2 7 Ni s h i n a k a j i ma,
Yo d o g a wa - k u,Os a k a - s h i,
Os a k a 5 3 2 - 0 0 1 1
Te l:+ 8 1 ( 6 ) 6 3 0 4 5 6 0 5
F a x:+ 8 1 ( 6 ) 6 3 0 4 5 6 0 6
E ma i l:i n f o @p i - j a p a n.j p
www.p i - j a p a n.j p
U K & I R E L A N D
P I ( P h y s i k I n s t r u me n t e ) L t d.
Tr e n t H o u s e,Un i v e r s i t y Wa y,
C r a n f i e l d Te c h n o l o g y P a r k,
C r a n f i e l d,B e d f o r d MK 4 3 0 A N
Te l:+ 4 4 ( 1 2 3 4 ) 7 5 6 3 6 0
F a x:+ 4 4 ( 1 2 3 4 ) 7 5 6 3 6 9
E ma i l:u k @p i.ws
www.p h y s i k i n s t r u me n t e.c o.u k
F R A N C E
P I F r
a n c e S.A.S.
2 4 4 b i s,a v e n u e Ma r x D o r mo y
9 2 1 2 0 Mo n t r o u g e
Te l:+ 3 3 ( 1 ) 5 5 2 2 6 0 0 0
F a x:+ 3 3 ( 1 ) 4 1 4 8 5 6 6 2
E ma i l:i n f o.f r a n c e @p i.ws
www.p i - f r a n c e.f r
I T A L Y
P h y s i k I n s t r u me n t e ( P I ) S.r.l.
V i a G.Ma r c o n i,2 8
2 0 0 9 1 B r e s s o ( MI )
Te l:+ 3 9 ( 0 2 ) 6 6 5 0 1 1 0 1
F a x:+ 3 9 ( 0 2 ) 6 1 0 3 9 6 5 6
E ma i l:i n f o @p i o n l i n e.i t
www.p i o n l i n e.i t
C H I N A
P h y s i k I n s t r u me n t e
( P I S h a n g h a i ) C o.,L t d.
B u i l d i n g No.7 - 1 0 6
L o n g d o n g Av e n u e 3 0 0 0
2 0 1 2 0 3 S h a n g h a i
Te l:+ 8 6 ( 2 1 ) 5 1 8 7 9 2 9 8
F a x:+ 8 6 ( 2 1 ) 6 8 7 9 0 0 9 8
E ma i l:i n f o @p i - ch i n a.c n
www.p i - c h i n a.c n
P I C e r a mi c Gmb H
L i n d e n s t r a ß e
0 7 5 8 9 L e d e r h o s e
Te l:+ 4 9 ( 3 6 6 0 4 ) 8 8 2 - 0
F a x:+ 4 9 ( 3 6 6 0 4 ) 8 8 2 - 4 1 0 9
E ma i l:i n f o @p i c e r a mi c.d e
www.p i c e r a mi c.d e
U S A & C A N A D A ( We s t )
& ME X I K O
CAT125EPiezoelectricCeramicProducts11/05/09.2,7;Subjecttochangewithoutnotice.©PhysikInstrumente(PI)GmbH&Co.KG2011
P I ( P h y s i k I n s t r u me n t e ) L.P.
5 4 2 0 Tr a b u c o R d.,S u i t e 1 0 0
I r v i n e,C A 9 2 6 2 0
Te l:+ 1 ( 9 4 9 ) 6 7 9 9 1 9 1
F a x:+ 1 ( 9 4 9 ) 6 7 9 9 2 9 2
E ma i l:i n f o @p i - u sa.u s
www.p i - u s
a.u s
W W W.P I C E R A M I C.C O M
P I Ge n e r a l C a t a l o g
R e q u e s t i t n o w!
T h e 5 3 0 p a g e h a r d b o u n d c a t a l o g u e f r o m
P I i s t h e mo s t c o mp r e h e n s i v e r e f e r e n c e
b o o k o n t h e f u n d a me n t a l s o f n a n o p o s i -
t i o n i n g,p i e z o s y s t e ms a n d mi c r o -
p o s i t i o n i n g t e c h n o l o g y y e t.T h e c a t a l o g
c o n t a i n s 2 0 0 p r o d u c t f a mi l i e s,wi t h mo r e
t h a n 1 0 0 0 d r a wi n g s,g r a p h s,i ma g e s a n d
t e c h n i c a l d i a g r a ms.
1 1 _ 0 4 1 0 _ P I C _ K a t _ E _ U m s c h l a g.q x d:L a y o u t 3 1 2.0 5.2 0 1 1 1 0:2 7 U h r S e i t e 1
P I E Z O T E C H N O L O G Y
P i e z o k e r a mi s c h e Ma t e r i a l i e n
u n d B a u e l e me n t e
G R U N D L A G E N,E I G E N S C H A F T E N U N D A N W E N D U N G E N
W E R K S T O F F E
K O M P O N E N T E N
I N T E G R A T I O N
P I E Z O NA NO P O S I T I O NI NG
H a u p t s i t z e
D E U T S C H L A N D
P h y s i k I n s t r u me n t e ( P I )
Gmb H & C o.K G
A u f d e r R ö me r s t r a ß e 1
7 6 2 2 8 K a r l s r u h e/P a l mb a c h
Te l:+ 4 9 ( 7 2 1 ) 4 8 4 6 - 0
F a x:+ 4 9 ( 7 2 1 ) 4 8 4 6 - 1 0 1 9
E ma i l:i n f o @p i.ws
www.p i.ws
Ni e d e r l a s s u n g e n
U S A ( O S T ) & K A N A D A
P I ( P h y s i k I n s t r u me n t e ) L.P.
1 6 A l b e r t S t.
A u b u r n,MA 0 1 5 0 1
Te l:+ 1 ( 5 0 8 ) 8 3 2 3 4 5 6
F a x:+ 1 ( 5 0 8 ) 8 3 2 0 5 0 6
E ma i l:i n f o @p i - u s a.u s
www.p i - u s a.u s
J A P A N
P I J a p a n C o.,L t d.
A k e b o n o - c h o 2 - 3 8 - 5
Ta c h i k a wa - s h i
To k y o 1 9 0 - 0 0 1 2
Te l:+ 8 1 ( 4 2 ) 5 2 6 7 3 0 0
F a x:+ 8 1 ( 4 2 ) 5 26 7 3 0 1
E m
a i l:i n f o @p i - j a p a n.j p
www.p i - j a p a n.j p
P I J a p a n C o.,L t d.
Ha n a h a r a Da i - Ni B u i l d i n g#7 0 3
4 - 1 1 - 2 7 Ni s h i n a k a j i ma,
Yo d o g a wa - k u,Os a k a - s h i,
Os a k a 5 3 2 - 0 0 1 1
Te l:+ 8 1 ( 6 ) 6 3 0 4 5 6 0 5
F a x:+ 8 1 ( 6 ) 6 3 0 4 5 6 0 6
E ma i l:i n f o @p i - j a p a n.j p
www.p i - j a p a n.j p
E N G L A N D & I R L A N D
P I ( P h y s i k I n s t r u me n t e ) L t d.
Tr e n t H o u s e,Un i v e r s i t y Wa y,
C r a n f i e l d Te c h n o l o g y P a r k,
C r a n f i e l d,B e d f o r d MK 4 3 0 A N
Te l:+ 4 4 ( 1 2 3 4 ) 7 5 6 3 6 0
F a x:+ 4 4 ( 1 2 3 4 ) 7 5 6 3 6 9
E ma i l:u k @p i.ws
www.p h y s i k i n s t r u me n t e.c o.u k
F R A N K R E I C H
P I F r a n c e S.A.S.
2 4 4 b i s,a v e n u e Ma r x D o r mo y
9 2 1 2 0 Mo n t r o u g e
Te l:+ 3 3 ( 1 ) 5 5 2 2 6 0 0 0
F a x:+ 3 3 ( 1 ) 4 1 4 8 5 6 6 2
E ma i l:i n f o.f r a n c e @p i.ws
www.p i f r a n c e.f r
I T A L I E N
P h y s i k I n s t r u me n t e ( P I ) S.r.l.
V i a G.Ma r c o n i,2 8
2 0 0 9 1 B r e s s o ( MI )
Te l:+ 3 9 ( 0 2 ) 6 6 5 0 1 1 0 1
F a x:+ 3 9 ( 0 2 ) 6 1 0 3 9 6 5 6
E ma i l:i n f o @p i o n l i n e.i t
www.p i o n l i n e.i t
C H I N A
P h y s i k I n s t r u me n t e
( P I S h a n g h a i ) C o.,L t d.
B u i l d i n g No.7 - 1 0 6
L o n g d o n g Av e n u e 3 0 0 0
2 0 1 2 0 3 S h a n g h a i
Te l:+ 8 6 ( 2 1 ) 5 1 8 7 9 2 9 8
F a x:+ 8 6 ( 2 1 ) 6 8 79 0 0 9 8
E m
a i l:i n f o @p i - c h i n a.c n
www.p i - c h i n a.c n
P I C e r a mi c Gmb H
L i n d e n s t r a ß e
0 7 5 8 9 L e d e r h o s e
Te l:+ 4 9 ( 3 6 6 0 4 ) 8 8 2 - 0
F a x:+ 4 9 ( 3 6 6 0 4 ) 8 8 2 - 4 1 0 9
E ma i l:i n f o @p i c e r a mi c.d e
www.p i c e r a mi c.d e
U S A ( WE S T ) & ME X I K O
CAT125DPiezokeramischeWerkstoffe11/03/14.3,0;Änderungenvorbehalten.©PhysikInstrumente(PI)GmbH&Co.KG2011
P I ( P h y s i k I n s t r u me n t e ) L.P.
5 4 2 0 Tr a b u c o R d.,S u i t e 1 0 0
I r v i n e,C A 9 2 6 2 0
Te l:+ 1 ( 9 4 9 ) 6 7 9 9 1 9 1
F a x:+ 1 ( 9 4 9 ) 6 7 9 9 2 9 2
E ma i l:i n f o @p i - u s a.u s
www.p i - u sa.u s
W W W.P I C E R A M I C.D E
D e r P I Ge s a mt k a t a l o g
J e t z t a n f o r d e r n!
A u f ü b e r 5 0 0 S e i t e n p r ä s e n t i e r t d e r P I
Ge s a mt k a t a l o g Gr u n d l a g e n u n d Te c h n o -
l o g i e v o n Na n o p o s i t i o n i e r u n g,P i e z o -
s y s t e me n u n d Mi k r o p o s i t i o n i e r u n g.
Me h r a l s 2 0 0 P r o d u k t f a mi l i e n we r d e n
v o r g e s t e l l t u n d mi t ü b e r 1 0 0 0 A b b i l d u n -
g e n,Me s s k u r v e n u n d P r i n z i p s k i z z e n
i l l u s t r i e r t.
1 1 _ 0 4 0 9 _ P I C _ K a t _ U m s c h l a g.q x d:L a y o u t 3 1 5.0 3.2 0 1 1 1 2:5 6 U h r S e i t e 1
BRO14E Parallel Kinematics 12/08/15.1; Subject to change without notice. © Physik Instrumente (PI) GmbH & Co. KG 2012
© P h y s i k I n s t r u me n t e ( P I ) Gmb H & C o. K G
A l l c o n t e n t s, i n c l u d i n g t e x t s, g r a p h i c s, d a t a e t c.,
a s we l l a s t h e i r l a y o u t, a r e s u b j e c t t o c o p y r i g h t
a n d o t h e r p r o t e c t i v e l a ws. A n y c o p y i n g, mo d i -
fi c a t i o n o r r e d i s t r i b u t i o n i n wh o l e o r i n p a r t s i s
s u b j e c t t o a wr i t t e n p e r mi s s i o n o f P I.
No t e
A l t h o u g h t h e i n f o r ma t i o n i n t h i s d o c u me n t h a s
b e e n c o mp i l e d wi t h t h e g r e a t e s t c a r e, e r r o r s
c a n n o t b e r u l e d o u t c o mp l e t e l y. T h e r e f o r e, we
c a n n o t g u a r a n t e e f o r t h e i n f o r ma t i o n b e i n g
c o mp l e t e, c o r r e c t a n d u p t o d a t e. P I r e s e r v e s t h e
r i g h t t o s u p p l e me n t o r c h a n g e t h e i n f o r ma t i o n
p r o v i d e d wi t h o u t p r i o r n o t i c e.