Human-Robot Interactive Systems: Control, Safety and Applications

chestpeeverΤεχνίτη Νοημοσύνη και Ρομποτική

13 Νοε 2013 (πριν από 3 χρόνια και 10 μήνες)

95 εμφανίσεις

D. Surdilovic:
Human-Robot InteractiveSystems:
Control, Safetyand Applications
WAMS 2010, Ylivieska, 12-13th October
WAMS 2010Human-Robot Interactive Systems
Outlook
1Passive Cobots
2Robust robot interactioncontroldesign
3Extension to admittancedisplays
4Interactiveindustrialrobots
5Interactiveadvancedhandlingsystems
6Recentdevelopments
7Conclusion
WAMS 2010Human-Robot Interactive Systems
Force and Vision Sensor-based Control
WAMS 2010Human-Robot Interactive Systems
Sensors integrationin IR control
WAMS 2010Human-Robot Interactive Systems
Which sense is crucial?
WAMS 2010Human-Robot Interactive Systems
CollaborativeRobots(Cobots/Kobots) –A New Classof Systems thatcombine
Features of Robotsand Passive Hand-drivenManipulators
WAMS 2010Human-Robot Interactive Systems
“2-DOF”Cobot
2-DOF Manipulator
What is a Cobot?
WAMS 2010Human-Robot Interactive Systems
Effectsof couplingthearm motions
WAMS 2010Human-Robot Interactive Systems
CVT-Principles
Transmission sphere
Cobot–Colgate, Peshkin
„non-holonomicmanipulator“-Nakamura
„Freewheelsmechanism“
-Trocaz
WAMS 2010Human-Robot Interactive Systems
CVT-Principles
„Brakes“–PTER (Book)
„Differential gear“-Surdilovic
WAMS 2010Human-Robot Interactive Systems
serial
parallel
Basic CobotsArchitectures
WAMS 2010Human-Robot Interactive Systems
IPK´sCobotPrototype –Structuralscheme
WAMS 2010Human-Robot Interactive Systems
IPK‘sCobotprototypewithdifferential gearbasedCVT
WAMS 2010Human-Robot Interactive Systems
Challengingproblems
–Safe and stable
interaction
–Low-admittancerendering
–Widely-accepteddesign
framework
–Understanding-planning
programmingcollaborativetasks
AdmittanceHapticDisplays
–Industrial assemblyscenarios
–High force/inertiaroboticsystems
–Stiffreal/virtualindustrial
environment
WAMS 2010Human-Robot Interactive Systems
Basic ComplianceControlConcepts
Howto controla robot to interactwithenvironment(human)
WAMS 2010Human-Robot Interactive Systems
Safety, safetyand stability, stabilityand safety??
WAMS 2010Human-Robot Interactive Systems
Pioneeringworkin force and compliancecontrol
(since1987)
Problems: samplingtime, quantization, time lags….
WAMS 2010Human-Robot Interactive Systems
Industrial robotsbasedadmittancedisplays
Nowadaysincreasinginterest-Report –„Everybodyis
moving/guidinga robot“
-Background : SafetystandardISO-EN-10218-1/2
-Collaboratingrobots
-Hand Guiding
-Attractiveapplications
-Problems: Stability/Safety( a widelyaccepteddesign
framework)
Robotsparadigmchange:
-Design foraccuracy/controlforsafety
-Design forsafety/controlforaccuracy
WAMS 2010Human-Robot Interactive Systems
Challenge: ESA Columbus A&R TestbedSystem
SPARCO Robot ControlSystem Development(1993-
1999)
Industrial robot technology + sensor-basedcontrol
(compliancecontrol)
WAMS 2010Human-Robot Interactive Systems
Industrial robotsbasedadmittancedisplayswithF/T sensors
Increasinginterest–
SafetystandardISO-EN-10218-1
-Collaboratingrobots
-Hand Guiding
-Attractiveapplications
-Problems: Stability/Safety
WAMS 2010Human-Robot Interactive Systems
Impedancecontrol: targetimpedance
WAMS 2010Human-Robot Interactive Systems
(
)
(
)
(
)
(
)
(
)
()()
()
()
sssss
sssss
FKBMxxe
FxxKBMe
1
tt
2
t0p
0tt
2
tf

++−−=
−−++=
Howto realizea targetmodel?
-Computedtorquemethod
(cancelrobot dynamics)
-Compensatorapproach
(decoupled, spatiallyround,
positioncontrolperformance)
Measuresforqualityof target
impedancemodelrealization
WAMS 2010Human-Robot Interactive Systems
–System passivity(Colgate and Hogan, 1989)
Stableinteractionwithanypassive Hamiltonianenvironment
Conservativness: Limits on apparentinertiareduction50% (IR M=500
++ kg)
–Small gainstheorem(Kazerooni, 1990)
Limits on robot stiffnessreduction( Kt> Ke, Kp= 50000 ++N/m)
–Numerousimprovements(1994-2007), e.g. NAC (Newman), Haptic
Systems (Colgate, Adams, Hannaford…..)
PROBLEMS: High inertia/stiffnessinteraction; controldesign!
Stabilityof Interaction/Design Frameworks
WAMS 2010Human-Robot Interactive Systems
–Relaxingpassivity(Buerger and Hogan, IROS 2006)
A1: Violatepassivitylimitations
A2: Take intoaccountknowledgeaboutenvironment?
Initial experiments: Apparentinertiareductionuntil30%
–Robust interactioncontrol(Surdilovic et al, 1995-2001)
Consideringlimitedknowledgeof theenvironmentKe?
In real/hapticenvironments(uncertain, variable, non-linear……)
Robust controlframework!
RethinkingPassivityFramework
WAMS 2010Human-Robot Interactive Systems
Robust Control: Simplifiednominal models+ Perturbations
WAMS 2010Human-Robot Interactive Systems
Robust stabilityof interaction
SISO:
()()()
[
]
1
0
1
1
2
2



+≤

s
t
Gs
e
GIsW
p
e
(
)
121
2
1
−+≥κ
t
ξ
Robust coupled= Robust contact-> Generalizedstability
WAMS 2010Human-Robot Interactive Systems
Real Sampled-DataSystem Stability: force retardationeffects
()
[]
1z
ˆ
)z(z2
1
t
1
e
n
<+



GGI
()
[]
1z
ˆ
)z(z
1
t
1
e
n
<+



GGI
PassivitybasedCS
Robust contact/coupledstability
τ=nT
Tustin transform preservesthe infinity norm
()()()
[
]
()
1
1
s
≤+


sGsGesGsW
et

e
Design oriented stability approach:
κ
t
ξ
t
ω

{
}
Lκ,,ω,ξ,MD
tttt
=
WAMS 2010Human-Robot Interactive Systems
Advantages of impedancecontrol
-Conventionalplanningin termof motionsequences
-Realizationof a traget mass-damper-springbehaviourby
thecontrolsystem(stabilityof all transitionprocessesand
coupledinteractions)
-Passivity/robust stabilityframework
-Selecttargetsystemparameters(LOW, MEDIUM, HIGH –
STIFFNESS, DAMPING)
-Center of Compliance(C-frame) concept(RCC)
-Natural/intuitive taskanalysis
WAMS 2010Human-Robot Interactive Systems
-Framessetting(C –frames)
-Gainssetting(linguistic): HIGH, MEDIUM,
LOW –IMPEDANCE, DAMPING, smooth
variation(relax)
-Compensationforpayload
-Controlactivation/deactivation
-Contact/taskmonitoring
-Taskorientedcommands: YIELD,
GET_CONTACT, INSERT, SLIDE, HINGE…
Programmingof interaction(compliance) controltasks:
WAMS 2010Human-Robot Interactive Systems
Elementalpart-matingtask
WAMS 2010Human-Robot Interactive Systems
Recentprototypicalimplementation(C4GOpen)
WAMS 2010Human-Robot Interactive Systems
Extension to Human-Robot Interaction
WAMS 2010Human-Robot Interactive Systems
Extension to admittancedisplays
WAMS 2010Human-Robot Interactive Systems
Ke=60000 (design); Ke=100000 (experiment)
N/m
Fh–hand force
Fe –real/simulated
environment
Robustnessof hapticcontrolsynthesis
WAMS 2010Human-Robot Interactive Systems
Ke=60000 (design); Ke=150000
(experiment) N/m
Ke=150000 (design); Ke=150000
(experiment) N/m
WAMS 2010Human-Robot Interactive Systems
Extension to –H-R-H interaction
WAMS 2010Human-Robot Interactive Systems
Admittancedisplays–motioncommandsgivenby
operatorvia force sensor
HRI : Industrial application(advancedmaterial handling
systems–power assistsystems)
WAMS 2010Human-Robot Interactive Systems
HRI : Virtualwallsrendering
WAMS 2010Human-Robot Interactive Systems
First industrialapplications
WAMS 2010Human-Robot Interactive Systems
COBOT development–IP PISA
WAMS 2010Human-Robot Interactive Systems
COBOT development–IP PISA –H-R-H interaction
WAMS 2010Human-Robot Interactive Systems
COBOT development–IP PISA –H-R-H interaction
WAMS 2010Human-Robot Interactive Systems
Human motoricability
WAMS 2010Human-Robot Interactive Systems
COBOT development–safetyissuesISO
10218-1/2 –Collaborationmode
-Reducedvelocity
-Constrainedeffectiveforce/power to
beexerteduponhuman/environment
-Attractiveapplications(Dynamic
modelbasedalgorithms)
-Problems: Safe SW, disturbances,
furthertestsand developments
WAMS 2010Human-Robot Interactive Systems
Conclusions:
–Efficient, reliableand feasiblecontroland
designframeworkforsafe
human/robot/environment
interactioncontrolsystems
On goingworks:
-Industrial applications
-Adaptation to thehuman motoric
-Testingpower/force constraintsafetyapproach