performed in Croatian part of Pannonian

cartcletchΤεχνίτη Νοημοσύνη και Ρομποτική

19 Οκτ 2013 (πριν από 4 χρόνια και 24 μέρες)

101 εμφανίσεις

Review of neural network analyses
performed in Croatian part of Pannonian
basin (petroleum geology data)


T. Malvić, J. Velić & M. Cvetković (Croatia)

12
th

Hungarian geomathematical congress and

1
st

Croatian
-
Hungarian geomathematical congress

Morahalom, 29
-
31 May, 2008

INTRODUCTION


Neural networks represent very strong tools for different prediction tasks in many
sciences.



Petroleum geology, and geology overall, is one of the field where such networks
can be very successful and relatively easy applied

for
different variable, like
porosity, depth, lithology and saturation.



Up to now, the neural prediction is applied
at the three Croatian fields

(
Figure 1
).



T
he Okoli field

(prediction of facies) in 2006
;
the Beničanci field

(porosity)
and
the
Kloštar field

(lithology and saturation)

in 2007.


Figure 1: Areas analyzed by neural networks in Croatia (
in
petroleum geology

domain
)

OKOLI FIELD

The Okoli field
, located in the Sava depression, is selected as the example for clastic facies prediction
using neural network.


The significant oil and gas reserves are proved in Lower Pontian sandstones.


Methodology of neural networks using in reservoir facies prediction is presented through paper of MALVIĆ
(2006)
and basics given i
ROSENBLATT, 1958; McCORMACK, 1991; RIEDMILLER & BRAUN, 1993
.


The analysis is based on
RProp algorithm
.


The network is trained using log data

(curves GR, R16", R64", PORE/T/W, SAND & SHALE)
from two
wells

(
code names B
-
1 & B
-
2;
Figure 2
).


The neural network was trained based on selected part of input data and registered lithology

from
c
2

reservoir (as analytical target) of Lower Pontian age.

P
ositions of facies (sand/marl sequences) were
predicted.



The results indicate on over
-
trained network in the case of sandstone sequences prediction (
Figures 3,4
)
,
because t
he marl sequences in the top and the base are mostly replaced by sandstone.


The

further neural facies modelling in the Sava depression need to be expanded with additional
logs

that
characterised lithology and saturation (SP, CN, DEN).


Then,
RPORP algorithm could be reached with more than 90% probability

of true prediction (in
presented analysis this value reached 82.1%).

Figure 2: Structural map of c
2

reservoir top with selected well's positions

Figure 3:
Relations of errors in periods of training (T), learning (L) and


validation (V) and position
of Face and Best configurations


(the symbols F, B in legend) for B
-
1 well

Figure 4:
Relations of errors in periods of training (T), learning (L) and


validation (V) and position
of Face and Best configurations


(the symbols F, B in legend) for B
-
2 well

BENIČANCI FIELD

The reservoir is represented by carbonate breccia (and conglomerates) of Badenian
age. Locally the thickness of entire reservoir sequence is locally more than 200 m.



The three seismic attributes were interpreted


amplitude, phase and frequencies
making 3D seismic cube
, averaged and correlated
(
CHAMBERS & YARUS, 2002
)

by
well porositites
at the 14 well locations.
It made the network training
.


The network was of the backpropagation type. It was fitted through 10000 iterations,
searching for the lowest value of correlation between attribute(s) and porosities and
the minimal convergence.


Results are
presented in the paper of
MALVIĆ & PRSKALO (2007)
.


The best training was reached using all three attributes together, what indicated on
tendency that neural networks like numerous inputs.


Obtained results
(
Figure 7
)
were compared by previously interpolated geostatistical
porosity maps (
done by kriging and cokriging approaches;

Figures 5 & 6
).


Relatively smooth map, and rarely reaching of measured porosity minimum and
maximum, strongly indicates on conclusion that neural estimation is more precisely
than previously interpolations (
Figure 7
).


The cokriging approach

included only reflection strength (derivation of amplitude) as
secondary seismic source of information (compared by neural inputs of three
attributes).


On contrary, the
neural approach favor using of all three attributes
.


In this case they are all in physical interconnection, but generally iIt alerts us on
carefully and geologically meaningful selection of the network inputs for any reservoir
analysis
.


Figure 5: Kriging porosity map (color scale 4
-
10%)

Figure 6: Cokriging porosity map (color scale 3
-
11%)

Figure 7: Neural network porosity map

(color scale 5
-
10%)

KLOŠTAR FIELD

The filed is located in the
Sava depression
.


The largest oil reserves are
in Upper Miocene sandstones
, i.e. in

“I. (Lower Pontian
age) and II. (Upper Pannonian age) sandstone series”.


The
basic principles of neural networks

had been studied from
ROSENBLATT

(
1958
),
ANDERSON & ROSENFELD
(
1989
) and
ZAHEDI

(
1993
)
,
and application on
sandstones
in diploma thesis of
CVETKOVIĆ (2007)
.


G
eophysical borehole measurements were used as input data for the neural network
analysis.
Supervised neural networks (SNN)

were trained in the
sandstone series
two wells (
Klo
-
A and Klo
-
B
)
.


Firstly,
input data where log data (curves SP, R16 and R64)
used for prediction of
lithology
.


Secondly, the neural network was used to predict saturation with hydrocarbons.

RESULTS
:


Relatively small prediction error values and very good correspondence
between predicted and real values was achieved.


This points out to great possibilities in neural network application on
petroleum geology problems and in exploration.


Accuracy of prediction can additionally be heightened by adding more
input data, primarily more data logs that are good at defining
lithological composition and hydrocarbon saturation such as
: G
amma
R
ay (GR),
C
ompensated
N
eutron (CN) and
D
ensity (DEN) logs.

Figure 8: Lithology prediction in well Klo
-
B

(1st case)

Figure 9: Lithology prediction in well Klo
-
B

(2nd case)

Figure 10: Saturation prediction in well Klo
-
A

Figure 11: Saturation prediction in well Klo
-
B

CONCLUSIONS (Okoli field)


1.
This is the first neural analysis of such type in hydrocarbon reservoir analysis in Croatia


2.
Excellent correlation was obtained between predicted and true position of sandstone lithology (reservoir of
Lower Pontian age in the Sava depression);


2. On contrary, positions of predicted and true marlstones positions (in top and bottom) mostly do not
correspond;


3. 4. The best prediction (so called Face machine) is reached in relatively
early
training period. In B
-
1 well such
prediction is observed in 2186
th

iteration, and in B
-
2 well in 7626
th

iteration;


5. It means that in similar facies analyses in the Sava depression, it is not neccessary to use large iteration set
(about 30000);


6.

The

input dataset would need to be extended on other log curves that characterize lithology, porosity and
saturation, like SP (spontaneous potential), CN (compensated neutron), DEN (density) and some other;


7. The wished true prediction could reached 90 % (Face machine could be cinfigured with 90 % probability).


CONCLUSIONS (Beničanci field)


1.
The neural network was selected as the tool for handling uncertainties of porosity distribution in
breccia
-
conglomerate carbonate reservoir of the Badenian age;


2. The lateral changes in averaged reservoir's porosities are influenced by the Middle Miocene
depositional environments;


3. The best porosity training results are obtained when all three seismic attributes (amplitude,
frequency, phase) were used;


4. The reached correlation is R
2
=0.987 and convergence criteria
S
e
2
=0.329;


5. These values can slightly (a few percent) differs in every new training, what is consequence of
stochastic (random sampling) is some process
es

of the network fitting;


6.
The result indicates that neural network very favor the numerous inputs
, but also can be
easily applied in the Beničanci field for porosity prediction.

CONCLUSIONS (Kloštar field)


1.
S
everal artificial neural networks were trained with the task
s

of
:


P
redicting lithology of Upper Pannonian sediments (“II sandstone series”) and Lower Pontian
deposits (“I sandstone series”) as well as


H
ydrocarbon saturation within these beds.


2. Radial Basus Function and multi Layer Perceptron networks were used and

excellent
corresponding of true and predicted
LITHOLOGICAL
values was achieved
;


3. Also, same algorithm
gave excellent corresponding

relation for WATER SATURATION

between real and predicted values
;


4.
Acquired results show large potential of neural networks application in
reservoir
characterisation;


5. Networks are also tools for ac
quiring quick results from well logs

vertical and lateral
correlation

with the goal of reservoir variables prediction.

REFERENCES

ANDERSON, J.A. and ROSENFELD, E. (1989): Neurocomputing: Foundations of Research. Cambridge, MA: MIT
Press.


CHAMBERS, R.L. & YARUS, J.M. (2002): Quantitative Use of Seismic Attributes for Reservoir Characterization.
RECORDER, Canadian SEG, Vol. 27, pp. 14
-
25, June.


CVETKOVIĆ, M. (2007): Petroleum geology use of neural networks on the example of reservoir in Kloštar field.
University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Graduate thesis,

mentor Prof.
Dr. J. Velić, 15. June 2007, 49 p.


MALVIĆ, T. (2006): Clastic facies prediction using neural networks (Case study from Okoli field). Nafta, 57, 10,
415
-
431.


MALVIĆ, T. and PRSKALO, S. (2007): Some benefits of the neural approach in porosity prediction (Case study
from Beničanci field). Nafta, 58, 9, 455
-
467.


McCORMACK, M.D. (1991): Neural Computing im Geophysics. The Leading Edge, 10/1, Society of Exploration
Geophysicists.


RIEDMILLER, M. and BRAUN, H. (1993): A direct adaptive method for faster backpropagation learning: The
RProp algorithm. Proc. of the IEEE Intl. Conf. on Neural Networks, San Francisco, p. 586
-
591.


ROSENBLATT, F. (1958): The perceptron: A probabilistic model for information storage and organization in the
brain. Psychological Review, 65, 386
-
408.


ZAHEDI, F. (1993): Inteligent systems for business, expert systems with neural networks. Wodsworth publishing
Inc.