"Gene Research Finds New Use in Agricultural Breeding"

burgerutterlyΒιοτεχνολογία

11 Δεκ 2012 (πριν από 4 χρόνια και 8 μήνες)

142 εμφανίσεις

New York Times


Gene Research Finds N
ew Use in Agricultural Breeding



Andrew Pollack

March 6, 2001

As the controversy surrounding genetically modified foods intensifies, scientists are
trying to use the rapidly growing knowledge about genes to enhance co
nventional
breeding of crops and livestock rather than implant genes from one species into another.

The enhanced breeding approach involves testing which genes are in a plant or animal,
allowing researchers to select more easily which ones to cross. That
can shave years off
the breeding of a new variety.

"Before we knew where the genes were, we were still breeding in the dark," said Dr.
Steven Briggs, head of genomics for Syngenta, a Swiss seed and agrichemical company.

Compared with genetic engineering,

this enhanced breeding has technical advantages and
disadvantages. But its biggest advantage is political. Many opponents of bioengineered
foods do not object to the technique because it avoids artificially transferring genes
between organisms. It is that

transfer that opponents say is unnatural and poses risks to
human health and the environment.

Indeed, some opponents of genetically altered plants and animals even champion the
approach as a way for society and companies to reap some of the benefits of g
enetic
science and avoid the risks.

"I think that's where the future is, to upgrade classical breeding," said Jeremy Rifkin, a
prominent critic of the biotechnology industry. "Classical breeders and geneticists can
use the genome but not do gene splicing.
" Mr. Rifkin calls this approach the soft path,
and says better understanding of genes could even be used to improve organic farming.

But agricultural biotechnology companies like Monsanto and Pioneer Hi
-
Bred
International, say that the two technologies a
re good for different tasks but cannot be
substituted for each other. So, while they are using the new breeding techniques, they
remain committed to genetic engineering as well.

"We don't see it as an alternative to genetic engineering," said Tony Cavalie
ri, vice
president for trait and technology development at Pioneer, a unit of DuPont.

And some executives say that even with improvements, crossbreeding is inefficient
compared with genetic engineering. With genetic engineering, scientists can transfer ju
st
the gene they want, whereas with crossbreeding, the genes of two parents are thoroughly
mixed.

"It's sort of a blunt instrument," said David W. Summa, chief executive of Mendel
Biotechnology, a plant genetics company in Hayward, Calif. "You're moving a
round lots
and lots of genes when you breed."

Still, a number of companies are turning to the approach because it avoids the regulatory
reviews required of genetically modified foods and is not expected to stir resistance from
consumers. The approach is c
alled marker
-
assisted breeding because it uses genetic
markers to guide the process.

"Marker
-
assisted selection is the first choice if we can solve the problem," said Wally
Beversdorf, head of plant science and agribusiness for Syngenta, which was formed
by
the merger of the agricultural businesses of Novartis and AstraZeneca. While Syngenta is
still committed to genetic engineering, Dr. Beversdorf said, it is applying that technique
"where we have to, where there is no opportunity for marker
-
assisted bree
ding."

Some newly formed companies are deliberately steering clear of genetic engineering.
AniGenics, a start
-

up in Concord, Mass., aims to identify genes associated with higher
milk production, more tender meat and other desirable traits of cattle and o
ther livestock.
But that knowledge would be used to guide conventional breeding, not to create
genetically altered herds.

"It may or may not be faster biologically," said Steven M. Niemi, the president. "It's
certainly faster politically."

The marker
-
bas
ed approach is being made easier by an explosion of knowledge about
genes. In January, Syngenta announced it had determined the complete genetic code of
rice, the first crop to have its genome sequenced. A month earlier, scientists had
completed the DNA se
quence of arabidopsis, a weed that is the plant world's equivalent
of the laboratory rat. And there are less detailed genetic maps available or being
developed for virtually every other important crop or farm animal.

The biggest drawback of the breeding a
pproach is that it is limited to traits that are
already contained in a species. Scientists would be able to use it, say, to breed a blue
tomato if they could not find a tomatoe containing blue
-
pigment genes to start the
process.

Syngenta, for instance, t
ried for 12 years to use conventional breeding to develop corn
that was resistant to the European corn borer but ended up with a variety that reduced the
pest damage only about 10 percent, Dr. Beversdorf said.

But some bacteria make a toxin that kills the

borer. It took the company only five years to
splice the bacterial gene into corn and develop a crop


known as BT corn


that can
almost completely eliminate damage from the borer.

Dr. Cavalieri of Pioneer said it would probably be impossible to develop

plants with
healthier oils without genetic engineering. And scientists say it would also probably be
impossible to use breeding alone to develop "golden rice," which could help combat
vitamin A deficiency in developing countries. The genes to provide the
vitamin A were
transferred to the rice from daffodils and bacteria.

Still, scientists say that many important traits


bigger fruit, higher yield, disease and
pest resistance


can often be found within the crop species itself.

At the Agriculture Departm
ent, Anna McClung recently used the technique to develop
rice that would be soft on the outside and firm on the inside after processing. The work
was done with a company hoping to sell the rice in Europe, where opposition to
genetically modified crops is h
igh. So genetic engineering was out of the question.

Both Pioneer and scientists at Purdue University used the technique to develop soybeans
that are resistant to the cyst nematode.

Classical breeding can be a long and tedious affair. Breeders might take

a plant with a
desirable characteristic, like disease resistance, and cross it with another plant with other
desirable traits, like high yield. They then examine the offspring, hoping to find plants
that have both disease resistance and high yield. Those
desirable plants might be then
crossed to make a new generation. The whole process can require 10 or more generations,
thousands of crosses and 5 to 15 years.

To see which offspring have the desired traits, the new generation usually must be
allowed to gr
ow up, and even then detection is often not easy. To test which of her rice
plants had the right cooking characteristics, Dr. McClung would have had to analyze
them chemically.

If scientists can test the genes, however, they can tell if the plant has the
desired trait
when it is still a seedling. "By having a genetic tag, you're able to see the presence or
absence of the trait every time," Dr. McClung said. With the marker, she developed the
rice in 5 years, instead of the 7 to 10 it would have otherwise t
aken.

Usually, scientists do not test for the genes themselves, since many of the genes are still
not known. Instead, they look for markers along the chromosome that are near the gene
and therefore tend to travel with the gene from one generation to the n
ext. The advantage
of this technique is that the markers can be used even if the breeders have not identified
the gene. Genetic engineering can be done only if the gene is known and isolated.

It is also possible to use markers to follow numerous traits th
rough the breeding process.
Genetic engineering is at present limited to transferring only one or a few genes. Yet
many traits, like the yield of a crop, are governed by multiple genes.

But marker
-
assisted selection can be extremely difficult and has not
lived up to the
expectations scientists had when the technique was first developed in the late 1980's, said
Nevin D. Young, professor of plant pathology and biology at the University of
Minnesota. "Traditional breeding is like a dice
-
rolling experiment," h
e said. "Markers are
like loaded dice, but they're hardly precise surgical instruments."

It can take years to find the associations between markers and traits, and sometimes links
cannot be found at all, he said. It also now costs about $1 to test one mar
ker in one plant,
which makes it very expensive to test numerous genes in thousands of plants. Still the
costs of such genetic analysis are expected to drop rapidly with the advancement of new
DNA testing methods that are also being developed for medical d
iagnosis.

One of the biggest opportunities presented by marker
-
assisted selection is to improve the
harnessing of wild relatives of crops. Human beings domesticated plants by selecting for
obvious traits, like bigger fruit. But over time, the genetic vari
ation in commercial crops
has become limited, so when breeders cross these crops, the possible outcomes are also
limited.

"We've left behind in this process a huge reservoir of natural variation," said Steven D.
Tanksley, professor of plant breeding and p
lant biology at Cornell. All the commercially
grown tomatoes in the world, from the tiniest cherry tomato to the beefiest beefsteak,
have less genetic variation than the wild tomatoes in a single valley in Peru, he said.

Breeders have tried to cross wild
relatives with commercial crops but with limited
success. One problem, Dr. Tanksley said, is knowing which wild plants to pick. Wild
tomatoes often are small and green and taste bad. Someone just looking at them would
not think of using them in breeding.

But even small, green tomatoes can contain some genes for redness and large fruit. The
marker studies allow these genes to be found. "The markers allow you to scan through
the whole genome," he said. "You can pick out the flavor genes away from the yucky
g
ene."

Indeed, Dr. Tanksley has crossed wild green tomatoes with commercial red ones and
produced even redder ones. And he crossed small wild tomatoes with big commercial
ones and got even bigger ones.

Robert Goodman, a professor of plant pathology at the

University of Wisconsin, said
there was still a risk that marker
-
assisted breeding could run into the same opposition as
transgenic crops because people might fail to make any distinction. But if that does not
happen, he said, the breeding approach could
provide a way out of the contentious
debate.

"Maybe in five to eight years we'll look back on this argument over transgenics and say,
`How arcane,' " said Dr. Goodman, who once headed research at Calgene, the company
that marketed the first genetically mo
dified crop, a tomato. "Not because it became
unpopular but simply because it got bypassed by the advances made by breeding powered
by genomics."

Copyright © New York Times